Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Thermodynamically-Consistent Reduced-Order Modeling of the Oxygen Response of Escherichia coli

Ederer, M., Sauter, T., Bettenbrock, K., Sawodny, O., & Gilles, E. D. (2008). Thermodynamically-Consistent Reduced-Order Modeling of the Oxygen Response of Escherichia coli. Talk presented at 9th International Conference on Systems Biology (ICSB 2008). Göteborg, Sweden. 2008-08-22 - 2008-08-28.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Ederer, M.1, Autor           
Sauter, T.1, 2, Autor           
Bettenbrock, K.1, Autor           
Sawodny, O.2, Autor
Gilles, E. D.1, Autor           
Affiliations:
1Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738155              
2Univ. of Stuttgart, Inst. for System Dynamics and Control Engineering, Stuttgart, Germany, persistent:22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Objective: The response of Escherichia coli to a varying oxygen availability is mediated by several genetic and enzymatic regulation systems. The adaptation to a change in oxygen availability involves a major reorganization of metabolic fluxes and concentrations. Thus, a consistent understanding of the oxygen response cannot be achieved by a reductionist's approach only. A computational model of the oxygen response can provide us with a sound understanding of the interaction of the involved processes. Results: We built a computational model of the steady-state oxygen response of Escherichia coli in a glucose limited chemostat. It contains the glycolysis, the tricarboxylic acid cycle, the electron transport chain and several fermentative pathways. Further, it contains the genetic regulation by the transcription factors ArcA, FNR, PdhR and CRP. In order to guarantee the thermodynamic feasibility of the model, we use the recently developed thermodynamic-Kinetic Modeling formalism (Ederer & Gilles, Biophys J, 92 (6), 2007). To reduce the number of state variables and parameters we extensively apply rapid-equilibrium assumptions to the metabolic reactions that are know to proceed near equilibrium. The model parameters were adapted to fit experimental data (uptake and excretion fluxes, intracellular nadh/nad ratio and several mRNA and enzyme activities, Alexeeva et al., J Bact, 2000, 2002, 2003). Conclusions: The model predicts intracellular fluxes and concentrations as well as the activity of the transcription factors for varying oxygen availability. Further, with the model we can perform extensive in silico mutant studies. The above introduced computational model provides a coherent and global picture of the oxygen response of E. coli. In the future the SUMO consortium will refine the model by testing several of the model predictions on mutant behavior. Acknowledgements: This work was supported by SysMO; project number 3 (Systems Understanding of Microbial Oxygen Responses, SUMO); www.sysmo.net. ME acknowledges also support from the German Bundesministerium für Bildung und Forschung (BMBF, FORSYS initiative). We thank all members of SUMO for fruitful discussions. © 2008 University of Göteborg [accessed December 22, 2008]

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2008
 Publikationsstatus: Keine Angabe
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 396202
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: 9th International Conference on Systems Biology (ICSB 2008)
Veranstaltungsort: Göteborg, Sweden
Start-/Enddatum: 2008-08-22 - 2008-08-28

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: