Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Dense Statistical Connectome of Rat Barrel Cortex

Udvary, D., Egger, R., Dercksen, V., & Oberlaender, M. (2016). Dense Statistical Connectome of Rat Barrel Cortex. Poster presented at Barrel Cortex Function 2016, Amsterdam, The Netherlands.

Item is

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
Link (beliebiger Volltext)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Udvary, D1, 2, Autor           
Egger, R1, 2, Autor           
Dercksen, VJ, Autor
Oberlaender, M1, 2, Autor           
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528698              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Synaptic connectivity is one important constrain for cortical signal flow and function. Consequently, a complete synaptic connectivity map (i.e., connectome) of a cortical area across spatial scales would advance our understanding of cortex organization and function. We present a dense statistical connectome of the entire rat vibrissal cortex based on measured 3D distributions of axons/dendrites/somata of excitatory and inhibitory neurons. By calculating the structural overlap between pre- and postsynaptic cells our model provides quantitative estimates on connectivity measurements like connection probability and number of synapses on cell type, cellular, and subcellular levels. We found that our model reproduces connectivity measurements between thalamic and excitatory/inhibitory neurons reported in paired recordings and light- and electron-microscopic studies. Similarly, intracortical synaptic connectivity of our model matches most connectivity measurements. However, the location and distance between pre- and postsynaptic cells and - in case of slicing experiments - the degree of truncation strongly influences the connectivity. When reproducing electronmicroscopic and in vitro slicing experiments in our model, we found that measurements obtained under the respective experimental conditions are in line with our model's results, but represent only a small fraction of the underlying distribution. The experimental conditions such as the small volume analyzed in electron-microscopic studies or the truncation of morphologies thus biases the conclusions that are drawn, e.g. an underestimation of the connection probability. Our approach can therefore be used to improve experimental design and seen as a starting point to simulate sensory-evoked signal flow and investigate structural and functional organization of the cortex.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016-05-20
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: UdvaryEDO2016_2
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Barrel Cortex Function 2016
Veranstaltungsort: Amsterdam, The Netherlands
Start-/Enddatum: -

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Barrel Cortex Function 2016
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 16 - 16 Identifikator: -