English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Neuronal Polarization: The Cytoskeleton Leads the Way

Stiess, M., & Bradke, F. (2011). Neuronal Polarization: The Cytoskeleton Leads the Way. Developmental Neurobiology, 71(6 Sp. Iss.), 430-444.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Stiess, M.1, Author           
Bradke, F.1, Author           
Affiliations:
1Max Planck Research Group: Axonal Growth and Regeneration / Bradke, MPI of Neurobiology, Max Planck Society, ou_1113553              

Content

show
hide
Free keywords: neuronal polarity; cytoskeleton; actin; microtubules
 Abstract: The morphology of cells is key to their function. Neurons extend a long axon and several shorter dendrites to transmit signals in the nervous system. This process of neuronal polarization is driven by the cytoskeleton. The first and decisive event during neuronal polarization is the specification of the axon. Distinct cytoskeletal dynamics and organization of the cytoskeleton determine the future axon while the other neurites become dendrites. Here, we will review how the cytoskeleton and its effectors drive axon specification and neuronal polarization. First, the role of the actin cytoskeleton and microtubules in axon specification will be presented. Then, we will discuss the role of the centrosome in axon determination as well as how microtubules are generated in axons and dendrites. Finally, we will discuss potential mechanisms leading to axon specification, such as positive feedback loops that could be a coordinated interaction between actin and microtubules. Together, this review will present the recent advances on the role of the microtubules and the actin cytoskeleton during neuronal polarization. We will pinpoint the upcoming challenges to gain a better understanding of neuronal polarization on a fundamental intracellular level. Finally, we will outline how reactivation of the intrinsic polarization program may help to induce axon regeneration after CNS injury. (C) 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 430-444, 2011

Details

show
hide
Language(s): eng - English
 Dates: 2011-06
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 564873
ISI: 000291215100004
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Developmental Neurobiology
  Alternative Title : Dev. Neurobiol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: MALDEN : WILEY-BLACKWELL
Pages: - Volume / Issue: 71 (6 Sp. Iss.) Sequence Number: - Start / End Page: 430 - 444 Identifier: ISSN: 1932-8451