English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
 PreviousNext  
  The influence of wind speed on shallow marine cumulus convection

Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the Atmospheric Sciences, 69, 168-184. doi:10.1175/JAS-D-11-02.1.

Item is

Files

show Files
hide Files
:
JAS-D-11-02.1 (Publisher version), 4KB
Name:
JAS-D-11-02.1
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
text/html / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Nuijens, L.1, Author           
Stevens, B.2, Author           
Affiliations:
1Observations and Process Studies, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913575              
2Director’s Research Group AES, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913570              

Content

show
hide
Free keywords: -
 Abstract: The role of wind speed on shallow marine cumulus convection is explored using large-eddy simulations and concepts from bulk theory. Focusing on cases characteristic of the trades, the equilibrium trade wind layer is found to be deeper at stronger winds, with larger surface moisture fluxes and smaller surface heat fluxes. The opposing behavior of the surface fluxes is caused by more warm and dry air being mixed to the surface as the cloud layer deepens. This leads to little difference in equilibrium surface buoyancy fluxes and cloud-base mass fluxes. Shallow cumuli are deeper, but not more numerous or more energetic. The deepening response is necessary to resolve an inconsistency in the subcloud layer. This argument follows from bulk concepts and assumes that the lapse rate and flux divergence of moist-conserved variables do not change, based on simulation results. With that assumption, stronger winds and a fixed inversion height imply larger surface moisture and buoyancy fluxes (heat fluxes are small initially). The consequent moistening tends to decrease cloud-base height, which is inconsistent with a larger surface buoyancy flux that tends to increase cloud-base height, in order to maintain the buoyancy flux at cloud base at a fixed fraction of its surface value (entrainment closure). Deepening the cloud layer by increasing the inversion height resolves this inconsistency by allowing the surface buoyancy flux to remain constant without further moistening the subcloud layer. Because this explanation follows from simple bulk concepts, it is suggested that the internal dynamics (mixing) of clouds is only secondary to the deepening response.

Details

show
hide
Language(s): eng - English
 Dates: 2012
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1175/JAS-D-11-02.1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of the Atmospheric Sciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: American Meteorological Society
Pages: - Volume / Issue: 69 Sequence Number: - Start / End Page: 168 - 184 Identifier: ISSN: 0022-4928
CoNE: https://pure.mpg.de/cone/journals/resource/954925418030