日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Efficient Top-k Querying over Social-Tagging Networks

Schenkel, R., Crecelius, T., Kacimi El Hassani, M., Michel, S., Neumann, T., Parreira, J. X., & Weikum, G. (2008). Efficient Top-k Querying over Social-Tagging Networks. In S.-H., Myaeng, D. W., Oard, F., Sebastiani, T.-S., Chua, & M.-K., Leong (Eds.), ACM SIGIR 2008: Thirty-First Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 523-530). New York, NY: ACM.

Item is

基本情報

表示: 非表示:
資料種別: 会議論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Schenkel, Ralf1, 著者           
Crecelius, Tom1, 2, 著者           
Kacimi El Hassani, Mouna1, 著者           
Michel, Sebastian1, 著者           
Neumann, Thomas1, 著者           
Parreira, Josiane Xavier1, 著者           
Weikum, Gerhard1, 著者           
所属:
1Databases and Information Systems, MPI for Informatics, Max Planck Society, ou_24018              
2International Max Planck Research School, MPI for Informatics, Max Planck Society, ou_1116551              

内容説明

表示:
非表示:
キーワード: -
 要旨: Online communities have become popular for publishing and searching content, as well as for finding and connecting to other users. User-generated content includes, for example, personal blogs, bookmarks, and digital photos. These items can be annotated and rated by different users, and these social tags and derived user-specific scores can be leveraged for searching relevant content and discovering subjectively interesting items. Moreover, the relationships among users can also be taken into consideration for ranking search results, the intuition being that you trust the recommendations of your close friends more than those of your casual acquaintances. Queries for tag or keyword combinations that compute and rank the top-k results thus face a large variety of options that complicate the query processing and pose efficiency challenges. This paper addresses these issues by developing an incremental top-k algorithm with two-dimensional expansions: social expansion considers the strength of relations among users, and semantic expansion considers the relatedness of different tags. It presents a new algorithm, based on principles of threshold algorithms, by folding friends and related tags into the search space in an incremental on-demand manner. The excellent performance of the method is demonstrated by an experimental evaluation on three real-world datasets, crawled from deli.cio.us, Flickr, and LibraryThing.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2009-03-262008
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): eDoc: 428213
その他: Local-ID: C125756E0038A185-379D646FF215A8AFC125742000389BCB-SchenkelCKMNPW08
 学位: -

関連イベント

表示:
非表示:
イベント名: SIGIR 2008
開催地: Singapore, Singapore
開始日・終了日: 2008-07-20 - 2008-07-24

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: ACM SIGIR 2008 : Thirty-First Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
種別: 会議論文集
 著者・編者:
Myaeng, Sung-Hyon, 編集者
Oard, Douglas W., 編集者
Sebastiani, Fabrizio, 編集者
Chua, Tat-Seng, 編集者
Leong, Mun-Kew, 編集者
所属:
-
出版社, 出版地: New York, NY : ACM
ページ: - 巻号: - 通巻号: - 開始・終了ページ: 523 - 530 識別子(ISBN, ISSN, DOIなど): ISBN: 978-1-60558-164-4

出版物 2

表示:
非表示:
出版物名: ACM SIGIR Forum
種別: 連載記事
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: - 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): -