Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Spline Approximation of General Volumetric Data

Rössl, C., Zeilfelder, F., Nürnberger, G., & Seidel, H.-P. (2004). Spline Approximation of General Volumetric Data. In G. Elber, N. Patrikalakis, & P. Brunet (Eds.), Proceedings of the 9th ACM Symposium on Solid Modeling and Applications (SM 2004) (pp. 71-82). Aire-la-Ville, Switzerland: Eurographics.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
sm04.pdf (beliebiger Volltext), 5MB
 
Datei-Permalink:
-
Name:
sm04.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Rössl, Christian1, Autor           
Zeilfelder, Frank1, Autor           
Nürnberger, Günther2, Autor
Seidel, Hans-Peter1, Autor                 
Affiliations:
1Computer Graphics, MPI for Informatics, Max Planck Society, ou_40047              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We present an efficient algorithm for approximating huge general
volumetric data sets, i.e.~the data is given over arbitrarily shaped
volumes and consists of up to millions of samples. The method is based
on cubic trivariate splines, i.e.~piecewise polynomials of total
degree three defined w.r.t. uniform type-6 tetrahedral partitions of
the volumetric domain. Similar as in the recent bivariate
approximation approaches, the splines in three variables
are automatically determined from the discrete data as a result of a
two-step method, where local discrete least
squares polynomial approximations of varying degrees are extended by
using natural conditions, i.e.the continuity and smoothness properties
which determine the underlying spline space. The main advantages of
this approach with linear algorithmic complexity are as follows: no
tetrahedral partition of the volume data is needed, only small
linear systems have to be solved, the local variation and
distribution of the data is automatically adapted,
Bernstein-B{\'e}zier techniques well-known in Computer Aided
Geometric Design (CAGD) can be fully exploited, noisy data are
automatically smoothed. Our numerical examples with huge data sets
for synthetic data as well as some real-world data confirm the
efficiency of the methods, show the high quality of the spline
approximation, and illustrate that the rendered iso-surfaces inherit
a visual smooth appearance from the volume approximating splines.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2005-04-272004
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 231348
Anderer: Local-ID: C125675300671F7B-F422C083451D4DC4C1256E76002C2509-rzns:sagvd:04
DOI: 10.2312/sm.20041378
BibTex Citekey: Rössl-et-al_SM04
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: 9th ACM Symposium on Solid Modeling and Applications
Veranstaltungsort: Genova, Italy
Start-/Enddatum: 2004-06-09 - 2004-06-11

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the 9th ACM Symposium on Solid Modeling and Applications (SM 2004)
Genre der Quelle: Konferenzband
 Urheber:
Elber, Gershon1, Herausgeber
Patrikalakis, Nick1, Herausgeber
Brunet, Pere1, Herausgeber
Affiliations:
1 External Organizations, ou_persistent22            
Ort, Verlag, Ausgabe: Aire-la-Ville, Switzerland : Eurographics
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 71 - 82 Identifikator: ISBN: 3-905673-55-X