English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Poly(vinyl alcohol)-coated microfluidic devices for high- performance microchip electrophoresis

Belder, D., Deege, A., Kohler, F., & Ludwig, M. (2002). Poly(vinyl alcohol)-coated microfluidic devices for high- performance microchip electrophoresis. Electrophoresis, 23(20), 3567-3573. doi:10.1002/1522-2683(200210)23:20<3567:AID-ELPS3567>3.0.CO;2-3.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Belder, Detlev1, Author           
Deege, Alfred1, Author           
Kohler, Frank1, Author           
Ludwig, Martin1, Author           
Affiliations:
1Research Group Belder, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445595              

Content

show
hide
Free keywords: Coating; Electroosmosis; Electrophoresis; Microchip; Poly(vinyl alcohol)
 Abstract: The channels of microfluidic glass chips have been coated with poly(vinyl alcohol) (PVA). Applied for microchip electrophoresis, the coated devices exhibited a suppressed electroosmotic flow and improved separation performance. The superior performance of PVA-coated channels could be demonstrated by electrophoretic separations of labeled amines and by video microscopy. While a distorted sample zone is injected using uncoated channels the application of PVA-coated channels results in an improved shape of the sample zone with less band broadening. Applying PVA-coated microchips for the separation of amines labeled with Alexa Fluor 350TM even sub- second separations, utilizing a separation length of only 650 mum, could be obtained, while this was not possible using uncoated devices. By using PVA-coated devices rather than an uncoated chip a threefold increase in separation efficiencies could be observed. As the electroosmotic flow (EOF) was suppressed, the anionic compounds were detected at the anode whereas the dominant EOF in uncoated devices resulted in an effective mobility to the cathode. Besides improved separation performance another important feature of the PVA-coated channels was the suppressed adsorption of fluorescent compounds in repetitive runs which results in an improved robustness and detection sensitivity. Applying PVA-coated channels, rinsing or etching steps could be omitted while this was necessary for a reliable operation of uncoated devices.

Details

show
hide
Language(s): eng - English
 Dates: 2002-10-20
 Publication Status: Issued
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Electrophoresis
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim, Germany : Verlag Chemie,
Pages: - Volume / Issue: 23 (20) Sequence Number: - Start / End Page: 3567 - 3573 Identifier: ISSN: 0173-0835
CoNE: https://pure.mpg.de/cone/journals/resource/954925486765