English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Structural investigation of Silicalite-I loaded with n-hexane by X-ray diffraction, Si-29 MAS NMR, and molecular modeling

Morell, H., Angermund, K., Lewis, A. R., Brouwer, D. H., Fyfe, C. A., & Gies, H. (2002). Structural investigation of Silicalite-I loaded with n-hexane by X-ray diffraction, Si-29 MAS NMR, and molecular modeling. Chemistry of Materials, 14(5), 2192-2198. doi:10.1021/cm011267f.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Morell, H.1, Author
Angermund, K.2, Author              
Lewis, A. R.1, Author
Brouwer, D. H.1, Author
Fyfe, C. A.1, Author
Gies, H.1, Author
Affiliations:
1Ruhr Univ Bochum, Inst Mineral, D-44780 Bochum, Germany; Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada, ou_persistent22              
2Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445590              

Content

show
hide
Free keywords: -
 Abstract: The room temperature (298 K) structure of zeolite Silicalite-I loaded with approximately eight n-hexane molecules per unit cell was solved from twinned single-crystal X-ray diffraction (XRD) data in the monoclinic space group P12(1)/n1 with a = 19.8247(2) Angstrom, b = 20.1292(2) Angstrom, c = 13.4510(2) Angstrom, and beta = 90.29(8)degrees. At this temperature, the guest molecules are dynamically disordered and distributed throughout the entire channel system. The structure determined from a Rietveld refinement of room-temperature powder XRD data, which is not affected by the twinning, confirmed this. A twinned crystal refinement was also carried out for data collected at 180 K (P12(1)/n1, a = 19.9310(2) Angstrom, b = 20.1730(3) degrees, c = 13.4191(3) Angstrom, = 90.20(5)degrees). At 180 K, the sorption sites of the n-hexane molecules are well-defined within the channel system, being located only in the straight and sinusoidal channels, leaving the intersections unoccupied. This ordering is commensurate with the framework structure of Silicalite-I. Si-29 HPDEC MAS NMR shows that the loading of n-hexane induces a phase transition to an orthorhombic space group (most likely Pnma) only above 340 K. Force field simulations confirm that the absorption of n-hexane molecules occurs only inside the straight and sinusoidal channels and leads to an energetically minimized host-guest structure. By optimizing the van der Waals interactions between the n-hexane molecules and the silica host framework, the nonbonding energy is minimized, leading to a general minimization of the total potential energy, and the energetically most favorable structure is obtained.

Details

show
hide
Language(s): eng - English
 Dates: 2002-05
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 20101
DOI: 10.1021/cm011267f
ISI: 000175790100041
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Chemistry of Materials
  Alternative Title : Chem. Mat.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 14 (5) Sequence Number: - Start / End Page: 2192 - 2198 Identifier: ISSN: 0897-4756