English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Remark on the anisotropic prescribed mean curvature equation on arbitrary domains

Marquardt, T. (2009). Remark on the anisotropic prescribed mean curvature equation on arbitrary domains. Mathematische Zeitschrift, online first. doi:10.1007/s00209-009-0476-0.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-452E-3 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-452F-1
Genre: Journal Article

Files

show Files
hide Files
:
MZ09.pdf (Publisher version), 146KB
Name:
MZ09.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Marquardt, Thomas1, Author              
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24012              

Content

show
hide
Free keywords: -
 Abstract: In this article we consider the Dirichlet problem for hypersurfaces of aniso- tropic prescribed mean curvature H = H(x, u, N) depending on $${x \in \varOmega \subset \mathbb {R}^n}$$, the height u of the hypersurface M = graph u over $${\varOmega}$$ and the unit normal N to M at (x, u). We give a condition relating H and the mean curvature of $${\partial \varOmega}$$ that guarantees the existence of smooth solutions even for not necessarily convex domains.

Details

show
hide
Language(s):
 Dates: 2009-01-22
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 426874
DOI: 10.1007/s00209-009-0476-0
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Mathematische Zeitschrift
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: online first Sequence Number: - Start / End Page: - Identifier: ISSN: 1432-1823