English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A New Template Family For The Detection Of Gravitational Waves From Comparable Mass Black Hole Binaries

Porter, E. (2007). A New Template Family For The Detection Of Gravitational Waves From Comparable Mass Black Hole Binaries. Physical Review D, 76(10): 104002.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-4794-9 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-4795-7
Genre: Journal Article

Files

show Files
hide Files
:
0706.0114v2.pdf (Preprint), 490KB
Name:
0706.0114v2.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-
:
prd76_104002.pdf (Publisher version), 763KB
Name:
prd76_104002.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Porter, Edward1, Author
Affiliations:
1Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24013              

Content

show
hide
Free keywords: -
 Abstract: In order to improve the phasing of the comparable-mass waveform as we approach the last stable orbit for a system, various re-summation methods have been used to improve the standard post-Newtonian waveforms. In this work we present a new family of templates for the detection of gravitational waves from the inspiral of two comparable-mass black hole binaries. These new adiabatic templates are based on re-expressing the derivative of the binding energy and the gravitational wave flux functions in terms of shifted Chebyshev polynomials. The Chebyshev polynomials are a useful tool in numerical methods as they display the fastest convergence of any of the orthogonal polynomials. In this case they are also particularly useful as they eliminate one of the features that plagues the post-Newtonian expansion : The Chebyshev binding energy now has information at all post-Newtonian orders, compared to the post-Newtonian templates which only have information at full integer orders. In this work, we compare both the post-Newtonian and Chebyshev templates against a fiducially exact waveform. This waveform is constructed from a hybrid method of using the test-mass results combined with the mass dependent parts of the post-Newtonian expansions for the binding energy and flux functions. Our results show that the Chebyshev templates achieve extremely high fitting factors at all PN orders and have excellent parameter extraction. We also show that this new template family has a faster Cauchy convergence, gives a better prediction of the position of the Last Stable Orbit and in general recovers higher Signal-to-Noise ratios than the post-Newtonian templates.

Details

show
hide
Language(s):
 Dates: 2007-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 320077
Other: arXiv:0706.0114
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 76 (10) Sequence Number: 104002 Start / End Page: - Identifier: -