English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Towards the QFT on Curved Spacetime Limit of QGR. 2: A Concrete Implementation

Sahlmann, H., & Thiemann, T. (2006). Towards the QFT on Curved Spacetime Limit of QGR. 2: A Concrete Implementation. Classical and Quantum Gravity, 23(3), 909-954.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-4ACB-4 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-4ACC-2
Genre: Journal Article

Files

show Files
hide Files
:
cqg6_3_020.pdf (Publisher version), 490KB
Name:
cqg6_3_020.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-
:
3089.pdf (Preprint), 520KB
Name:
3089.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Sahlmann, Hanno, Author
Thiemann, Thomas1, Author              
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24014              

Content

show
hide
Free keywords: -
 Abstract: The present paper is the companion of [1] in which we proposed a scheme that tries to derive the Quantum Field Theory (QFT) on Curved Spacetimes (CST) limit from background independent Quantum General Relativity (QGR). The constructions of [1] make heavy use of the notion of semiclassical states for QGR. In the present paper, we employ the complexifier coherent states for QGR recently proposed by Thiemann and Winkler as semiclassical states, and thus fill the general formulas obtained in [1] with life. We demonstrate how one can, under some simplifying assumptions, explicitely compute expectation values of the operators relevant for the gravity-matter Hamiltonians of [1] in the complexifier coherent states. These expectation values give rise to effective matter Hamiltonians on the background on which the gravitational coherent state is peaked and thus induce approximate notions of n-particle states and matter propagation on fluctuating spacetimes. We display the details for the scalar and the electromagnetic field. The effective theories exhibit two types of corrections as compared to the the ordinary QFT on CST. The first is due to the quantum fluctuations of the gravitational field, the second arises from the fact that background independence forces both geometry and matter to propagate on a spacetime that is the product of the real line and a (random) graph. Finally we obtain explicit numerical predictions for non-standard dispersion relations for the scalar and the electromagnetic field. They should, however, not be taken too seriously, due to the many ambiguities in our scheme, the analysis of the physical significance of which has only begun. We show however, that one can classify these ambiguities at least in broad terms

Details

show
hide
Language(s): eng - English
 Dates: 2006
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 3089
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Classical and Quantum Gravity
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 23 (3) Sequence Number: - Start / End Page: 909 - 954 Identifier: -