English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Theory of Newtonian self-gravitating stationary spherically symmetric systems

Heinzle, J. M., Rendall, A. D., & Uggla, C. (2006). Theory of Newtonian self-gravitating stationary spherically symmetric systems. Mathematical Proceedings of the Cambridge Philosophical Society, 140, 177-192.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-4ADE-9 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-4ADF-7
Genre: Journal Article

Files

show Files
hide Files
:
0408045.pdf (Preprint), 239KB
Name:
0408045.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Heinzle, J. Mark, Author
Rendall, Alan D.1, Author              
Uggla, Claes, Author
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24012              

Content

show
hide
Free keywords: -
 Abstract: We investigate spherically symmetric equilibrium states of the Vlasov-Poisson system, relevant in galactic dynamics. We recast the equations into a regular three-dimensional system of autonomous first order ordinary differential equations on a region with compact closure.Based on a dynamical systems analysis we derive theorems that guarantee that the steady state solutions have finite mass and compact support.

Details

show
hide
Language(s): eng - English
 Dates: 2006
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 204919
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Mathematical Proceedings of the Cambridge Philosophical Society
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 140 Sequence Number: - Start / End Page: 177 - 192 Identifier: -