English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Methane cycling in lake sediments and its influence on chironomid larval δ13C

Eller, G., Deines, P., Grey, J., Richnow, H.-H., & Krüger, M. (2005). Methane cycling in lake sediments and its influence on chironomid larval δ13C. FEMS Microbiology Ecology, 54(3), 339-350. doi:10.1016/j.femsec.2005.04.006.

Item is

Files

show Files
hide Files
:
eller_2005.pdf (Publisher version), 362KB
 
File Permalink:
-
Name:
eller_2005.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Evolutionary Biology, MPLM; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Eller, Gundula1, Author           
Deines, Peter1, Author           
Grey, Jonathan1, Author           
Richnow, Hans-Hermann, Author
Krüger, Martin, Author
Affiliations:
1Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_976547              

Content

show
hide
Free keywords: Carbon cycle; Carbon stable isotopes; Methanogenesis; Archaea; Methanotroph; Chironomid larvae
 Abstract: Stable carbon isotope analysis of chironomid larvae gave rise to the hypothesis that methane-oxidizing bacteria can provide an important food source for higher trophic levels in lakes. To investigate the importance of the methane cycle for the larval stable carbon signatures, isotope analysis and microbiological and biogeochemical investigations were combined. The study was based on comparison of a dimictic lake (Holzsee) and a polymictic, shallow lake (Großer Binnensee), both located in northern Germany. Both lakes are inhabited by Chironomus plumosus larvae, which exhibited a stronger 13C-depletion in Holzsee than in Großer Binnensee, indicating a greater contribution of methane–carbon in the former. Indeed, the processes involved in the microbial methane cycle were found to be more active in Holzsee, showing higher potential methane production and methane oxidation rates. Consistently, cell numbers of methane-oxidizing bacteria were with 0.5 − 1.7 × 106 cells Click to view the MathML source about one order of magnitude higher in Holzsee than in Großer Binnensee. Molecular analysis of the microbial community structure revealed no differences in the methanotrophic community between the two lakes, with a clear dominance of type I methanotrophs. The methanogenic population seemed to be adapted to the prevailing substrate in the respective lake (H2/CO2 in Holzsee and acetate in Großer Binnensee), even though differences were minor. In conclusion, the stronger larval 13C-depletion in Holzsee was not reflected in differences in the microbial community structure, but in the activity and size of the methanogenic and methanotrophic populations in the lake sediment.

Details

show
hide
Language(s): eng - English
 Dates: 2005-11
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 245262
DOI: 10.1016/j.femsec.2005.04.006
Other: 2408/S 38417
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: FEMS Microbiology Ecology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 54 (3) Sequence Number: - Start / End Page: 339 - 350 Identifier: ISSN: 0168-6496