hide
Free keywords:
Gryllus campestris; induced immunity; lipopolysaccharide; lysozyme; prophenoloxidase protein load
Abstract:
Inducible immune defence may allow organisms a state-dependent upregulation of costly immunity in order to minimize the risk of anticipated future parasitism. The basic costs of elevated immune activity might involve a reduction in other fitness-related traits as well as an increased risk of immunopathology. In male field crickets Gryllus campestris we experimentally investigated the condition-dependent effects of immune system activation in nymphs on immunity and physiological condition during adulthood. Following a nymphal injection of bacterial lipopolysaccharides, adult males showed significantly elevated levels of two major immune parameters, i.e. haemolymph antibacterial activity and the concentration of prophenoloxidase (proPO). By contrast, the active enzyme, phenoloxidase (PO), did not increase, suggesting a strategic long-term upregulation of the inactive proenzyme proPO only. This may help avoid the cytotoxic effects associated with high standing levels of the active enzyme. The nymphal immune insult further caused a reduction in adult haemolymph protein load, suggesting a long-term decline in overall metabolic condition. Nymphal food availability positively affected adult lysozyme activity, while PO and proPO concentrations were not affected. Our data thus suggest the long-term upregulation of immunity in response to antigenic cues as an adaptive, yet costly, invertebrate strategy to improve resistance to future parasitism.