English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations

Rotthauwe, J.-H., Witzel, K.-P., & Liesack, W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 63(12), 4704-4712.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-000F-E205-3 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-000F-E206-1
Genre: Journal Article

Files

show Files
hide Files
:
Rotthauwe_1997.pdf (Publisher version), 721KB
 
File Permalink:
-
Name:
Rotthauwe_1997.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Evolutionary Biology, MPLM; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Rotthauwe, Jan-Henrich, Author
Witzel, Karl-Paul1, Author              
Liesack, Werner, Author
Affiliations:
1Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_976547              

Content

show
hide
Free keywords: -
 Abstract: The naturally occurring genetic heterogeneity of autotrophic ammonia-oxidizing populations belonging to the beta subclass of the Proteobacteria was studied by using a newly developed PCR-based assay targeting a partial stretch of the gene which encodes the active-site polypeptide of ammonia monooxygenase (amoA). The PCR yielded a specific 491-bp fragment with all of the nitrifiers tested, but not with the homologous stretch of the particulate methane monooxygenase, a key enzyme of the methane oxidizing bacteria. The assay also specifically detected amoA in DNA extracted from various aquatic and terrestrial environments. The resulting PCR products retrieved from rice roots, activated sludge, a freshwater sample, and an enrichment culture were used for the generation of amoA gene libraries. No false positives were detected in a set of 47 randomly selected clone sequences that were analyzed further. The majority of the environmental sequences retrieved from rice roots and activated sludge grouped within the phylogenetic radiation defined by cultured strains of the genera Nitrosomonas and Nitrosospira. The comparative analysis identified members of both of these genera in activated sludge; however, only Nitrosospira-like sequences with very similar amino acid patterns were found on rice roots. Further differentiation of these molecular isolates was clearly possible on the nucleic acid level due to the accumulation of synonymous mutations, suggesting that several closely related but distinct Nitrosospira-like populations are the main colonizers of the rhizosphere of rice. Each of the amoA gene libraries obtained from the freshwater sample and the enrichment culture was dominated by a novel lineage that shared a branch with the Nitrosospira cluster but could not be assigned to any of the known pure cultures. Our data suggest that amoA represents a very powerful molecular tool for analyzing indigenous ammonia-oxidizing communities due to (i) its specificity, (ii) its fine-scale resolution of closely related populations, and (iii) the fact that a functional trait rather than a phylogenetic trait is detected

Details

show
hide
Language(s): eng - English
 Dates: 1997-12
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 206754
Other: 1648/S 37277
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Applied and Environmental Microbiology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 63 (12) Sequence Number: - Start / End Page: 4704 - 4712 Identifier: ISSN: 0099-2240