hide
Free keywords:
-
Abstract:
We formulate and optimize a computational search strategy for detecting gravitational waves from isolated, previously-unknown neutron stars (that is, neutron stars with unknown sky positions, spin frequencies, and spin-down parameters). It is well known that fully coherent searches over the relevant parameter-space volumes are not computationally feasible, and so more computationally efficient methods are called for. The first step in this direction was taken by Brady & Creighton (2000), who proposed and optimized a two-stage, stack-slide search algorithm. We generalize and otherwise improve upon the Brady-Creighton scheme in several ways. Like Brady & Creighton, we consider a stack-slide scheme, but here with an arbitrary number of semi-coherent stages and with a coherent follow-up stage at the end. We find that searches with three semi-coherent stages are significantly more efficient than two-stage searches (requiring about 2-5 times less computational power for the same sensitivity) and are only slightly less efficient than searches with four or more stages. We calculate the signal-to-noise ratio required for detection, as a function of computing power and neutron star spin-down-age, using our optimized searches.