English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A Fast Apparent-Horizon Finder for 3-Dimensional Cartesian Grids in Numerical Relativity

Thornburg, J. (2004). A Fast Apparent-Horizon Finder for 3-Dimensional Cartesian Grids in Numerical Relativity. Classical and Quantum Gravity, 21(2), 743-766.

Item is

Files

show Files
hide Files
:
21478.pdf (Publisher version), 452KB
Name:
21478.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Thornburg, Jonathan1, Author
Affiliations:
1Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24013              

Content

show
hide
Free keywords: -
 Abstract: In 3+1 numerical simulations of dynamic black hole spacetimes, it's useful to be able to find the apparent horizon(s) (AH) in each slice of a time evolution. A number of AH finders are available, but they often take many minutes to run, so they're too slow to be practically usable at each time step. Here I present a new AH finder,_AHFinderDirect_, which is very fast and accurate, typically taking only a few seconds to find an AH to $\sim 10^{-5} m$ accuracy on a GHz-class processor. I assume that an AH to be searched for is a Strahlk\"orper (star-shaped region) with respect to some local origin, and so parameterize the AH shape by $r = h(angle)$ for some single-valued function $h: S^2 \to \Re^+$. The AH equation then becomes a nonlinear elliptic PDE in $h$ on $S^2$, whose coefficients are algebraic functions of $g_{ij}$, $K_{ij}$, and the Cartesian-coordinate spatial derivatives of $g_{ij}$. I discretize $S^2$ using 6 angular patches (one each in the neighborhood of the $\pm x$, $\pm y$, and $\pm z$ axes) to avoid coordinate singularities, and finite difference the AH equation in the angular coordinates using 4th order finite differencing. I solve the resulting system of nonlinear algebraic equations (for $h$ at the angular grid points) by Newton's method, using a "symbolic differentiation" technique to compute the Jacobian matrix._AHFinderDirect_ is implemented as a thorn in the_Cactus_ computational toolkit, and will be made freely available starting in summer 2003

Details

show
hide
Language(s): eng - English
 Dates: 2004
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 21478
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Classical and Quantum Gravity
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 21 (2) Sequence Number: - Start / End Page: 743 - 766 Identifier: -