Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise: Frequentist analyses

Allen, B., Creighton, J. D. E., Flanagan, E. E., & Romano, J. D. (2002). Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise: Frequentist analyses. Physical Review D, 65(12): 122002. doi:10.1103/PhysRevD.65.122002.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-53A7-F Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-53A8-D
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
prd-02-65-122002.pdf (Verlagsversion), 234KB
Name:
prd-02-65-122002.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
eDoc_access: PUBLIC
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Allen, Bruce1, Autor              
Creighton, Jolien D. E., Autor
Flanagan, Eanna E., Autor
Romano, Joseph D., Autor
Affiliations:
1Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24011              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Gravitational wave detectors will need optimal signal-processing algorithms to extract weak signals from the detector noise. Most algorithms designed to date are based on the unrealistic assumption that the detector noise may be modeled as a stationary Gaussian process. However most experiments exhibit a non-Gaussian “tail” in the probability distribution. This “excess” of large signals can be a troublesome source of false alarms. This article derives an optimal (in the Neyman-Pearson sense, for weak signals) signal processing strategy when the detector noise is non-Gaussian and exhibits tail terms. This strategy is robust, meaning that it is close to optimal for Gaussian noise but far less sensitive than conventional methods to the excess large events that form the tail of the distribution. The method is analyzed for two different signal analysis problems: (i) a known waveform (e.g., a binary inspiral chirp) and (ii) a stochastic background, which requires a multi-detector signal processing algorithm. The methods should be easy to implement: they amount to truncation or clipping of sample values which lie in the outlier part of the probability distribution.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2002-06-19
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review D
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 65 (12) Artikelnummer: 122002 Start- / Endseite: - Identifikator: ISSN: 0556-2821