English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Gauge field theory coherent states (GCS): II. Peakedness properties

Thiemann, T., & Winkler, O. (2001). Gauge field theory coherent states (GCS): II. Peakedness properties. Classical and Quantum Gravity, 18, 2561-2636.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-561A-2 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-561B-F
Genre: Journal Article

Files

show Files
hide Files
:
2801.pdf (Preprint), 776KB
Name:
2801.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Thiemann, Thomas1, Author              
Winkler, Oliver, Author
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24014              

Content

show
hide
Free keywords: -
 Abstract: In this paper we apply the methods outlined in the previous paper of this series to the particular set of states obtained by choosing the complexifier to be a Laplace operator for each edge of a graph. The corresponding coherent state transform was introduced by Hall for one edge and generalized by Ashtekar, Lewandowski, Marolf, Mourăo and Thiemann to arbitrary, finite, piecewise-analytic graphs. However, both of these works were incomplete with respect to the following two issues. The focus was on the unitarity of the transform and left the properties of the corresponding coherent states themselves untouched. While these states depend in some sense on complexified connections, it remained unclear what the complexification was in terms of the coordinates of the underlying real phase space. In this paper we complement these results: first, we explicitly derive the complexification of the configuration space underlying these heat kernel coherent states and, secondly, prove that this family of states satisfies all the usual properties. (i) Peakedness in the configuration, momentum and phase space (or Bargmann-Segal) representation. (ii) Saturation of the unquenched Heisenberg uncertainty bound. (iii) (Over)completeness. These states therefore comprise a candidate family for the semiclassical analysis of canonical quantum gravity and quantum gauge theory coupled to quantum gravity. They also enable error-controlled approximations to difficult analytical calculations and therefore set a new starting point for numerical, semiclassical canonical quantum general relativity and gauge theory. The text is supplemented by an appendix which contains extensive graphics in order to give a feeling for the so far unknown peakedness properties of the states constructed.

Details

show
hide
Language(s): eng - English
 Dates: 2001
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 2801
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Classical and Quantum Gravity
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 18 Sequence Number: - Start / End Page: 2561 - 2636 Identifier: -