English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Bernoulli Potential in Superconductors. How the Electrostatic Field Helps to Understand Superconductivity

Lipavsky, P., Kolacek, J., Morawetz, K., Brandt, E. H., & Yang, T. J. (2008). Bernoulli Potential in Superconductors. How the Electrostatic Field Helps to Understand Superconductivity. Berlin, Heidelberg, New York: Springer.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Lipavsky, P.1, Author
Kolacek, J.1, Author
Morawetz, K.1, Author
Brandt, E. H.2, Author           
Yang, T. J.1, Author
Affiliations:
1Charles University, Prague, Czech Republic; Chemnitz University of Technology, Chemnitz, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Institute of Physics, Academy of Sciences, Prague, Czech Republic; National Chiao-Tung University, Department of Electrophysics, ou_persistent22              
2Emeriti and Others, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497650              

Content

show
hide
Free keywords: MPI für Metallforschung; Emeriti and Others; Superconductivity; Electric Field; Bernoulli Potential; Vortex Lattice; London Theory; Ginzburg-Landau Theory; Diamagnetic Currents; Layered Structures
 Abstract: -

Details

show
hide
Language(s): eng - English
 Dates: 2008
 Publication Status: Issued
 Pages: VIII,268
 Publishing info: Berlin, Heidelberg, New York : Springer
 Table of Contents: {1}History of the Bernoulli potential}{1}
{1.1}Magneto-hydrodynamics}{1}
{1.2}Thermodynamical forces}{1}
{1.3}Surface dipole}{3}
{1.4}Non-local theory}{4}
{1.5}Field effect on the superconductivity}{4}
References

{2}Basic concepts}{7}
{2.1}Maxwell equations}{7}
{2.1.1}Electromagnetic potentials}{8}
{2.1.2}Coulomb gauge}{9}
{2.1.3}Equation of continuity}{10}
{2.2}Material relations in normal metals}{11}
{2.2.1}Ohm law}{9} {2.2.2}Hall effect}{11}
{2.2.3}Drift in crossed electric and magnetic fields}{14}
{2.3}Material relations in superconductors}{15}
{2.3.1}Magneto-hydrodynamical picture}{13}
{2.3.2}London theory}{18}
{2.3.3}London penetration depth}{20}

{3}Balance of forces}{21}
{3.1}Bernoulli potential}{21}
{3.1.1}Close to the charge neutrality}{22}
{3.1.2}Transient period}{23}
{3.2}Surface charge}{24}
(3.2.1}Diamagnetic current versus drift}{24}
{3.2.2}Surface charge}{25}
{3.2.3}Thomas-Fermi screening}{25}
{3.3}Finite temperatures}{29}
{3.3.1}London penetration depth}{29}
{3.3.2}Quasi-particle screening}{29}
{3.4}Lorentz force}{31}
{3.4.1}Magnetic pressure}{32}

{4}Thermodynamical correction}{35}
{4.1}Theory of Rickayzen}{35}
{4.1.1}Gibbs electro-chemical potential}{36}
{4.1.2}Local approximation of free energy}{37}
{4.1.3}Thermodynamical corrections}{39}
{4.2}Measurements of Bernoulli potential}{40}
{4.2.1}Standard Hall bar setup}{41}
{4.2.2}Kelvin capacitive pickup}{42}
{Bernoulli potential first observed}{44}
{High-precission measurements of the Bernoulli potential}{45}
{4.2.3}Charge transfer in the superconductor}{48}

{5}Phenomenological description}{51}
{5.1}Thermodynamic relations}{52}
{5.1.1}Free energy of a normal metal}{53}
{5.1.2}Free energy of a superconductor}{54}
{5.2}Two-fluid model}{55}
{5.3}Currents in the two-fluid model}{57}
{5.3.1}Extended London theory}{57}
{5.4}Electrostatic potential}{59}
{5.4.1}Free energy for the Coulomb interaction}{60}
{5.5}The two fluid model with the electric field}{61}
{5.5.1}Stability conditions alias Equations of motion}{61}
{5.5.2}Thomas-Fermi screening}{62}
{5.5.3}Thermodynamical correction of Rickayzen}{63}
{
{6}Non-local corrections}{67}
{6.1}Preliminary assumptions}{67}
{6.1.1}Intermediate states}{67}
{6.1.2}Magnetism of atoms}{69}
{Paramagnetic mechanism}{70}
{Diamagnetic mechanism}{70}
{Diamagnetic current}{71}
{6.2}Wave function for super-electrons}{72}
{6.2.1}Free energy with quantum features}{73}
{6.2.2}Neglect of surface free energy}{73}
{6.2.3}From kinetic energy to gradient corrections}{74}
{6.3}Free energy}{75}
{6.3.1}Original free energy of Ginzburg and Landau}{76}

{7}Extended Ginzburg-Landau theory}{79}
{7.1}Maxwell equations}{79}
{7.1.1}Poisson equations}{79}
{7.1.2}Ampere law}{80}
{7.2}Ginzburg-Landau equation}{81}
{7.2.1}Variation with complex variables}{81}
{7.2.2}Equation of Schr\"odinger type}{82}
{Quantum kinetic energy}{82}
{Equation for the wave function}{83}
{Boundary condition}{83}
{Effective potential for super-electrons}{84}
{7.3}Scalar potential}{86}

{8}Quasi-neutral limit}{89}
{8.1}Iterative treatment}{89}
{8.1.1}Zeroth order in the charge transfer}{89}
{8.1.2}Bernoulli potential in the first order}{90}
{8.1.3}Estimate of the charge density}{91}
{Scheme of iterations}{92}
{8.2}Continuity of super-current}{92}
{8.3}Anderson theorem}{93}
{8.4}Interaction with the magnetic field}{95}
{8.4.1}Phase transition in a very thin slab}{95}
{8.4.2}Little-Parks effect}{97}

{9}Diamagnetic current at surface}{103}
{9.1}Geometrical assumptions}{103}
{9.2}Low magnetic fields}{105}
{9.2.1}Zero magnetic field}{105}
{9.2.2}Linear order in the magnetic field}{106}
{9.3}Perturbations in the quadratic order}{106}
{9.3.1}GL wave function}{107}
{9.3.2}Bernoulli potential}{109}
{9.3.3}Surface charge}{110}
{9.3.4}Bernoulli potential at the surface}{111}
{9.3.5}Space profile of the Bernoulli potential}{112}
{9.3.6}Charge profile}{114}
{9.4}Strong magnetic field}{115}
{9.4.1}Magnetic field in third order response}{115}
{9.4.2}Magnetic field effect on the penetration depth}{116}
{9.5}Numerical results}{118}

{10}Surfaces}{123}
{10.1}Ground state energy for normal electrons}{124}
{10.1.1}Density of free electrons}{125}
{10.1.2}Kinetic energy of free electrons}{125}
{10.1.3}Gradient correction of Weizs\"acker}{126}
{10.1.4}Complete energy of the normal ground state}{127}
{10.2}Equations for charge profile}{128}
{10.2.1}Local approximation}{128}
{10.2.2}Screening in the local approximation}{129}
{10.2.3}Tunnelling into the vacuum}{130}
{10.2.4}Surface dipole}{131}
{10.3}Budd-Vannimenus theorem}{132}
{10.3.1}Identity for the surface potential}{133}
{10.3.2}Surface dipole of superconductor}{134}
{10.3.3}Magnetic field effect on the work function}{135}
{10.3.4}Electrostatic potential seen by capacitive pickup}{136}

{11}Matching of electrostatic potentials at surfaces}{139}
{11.1}Surface dipole on the intermediate scale}{139}
{11.2}Surface potential step in local approximations}{142}
{11.2.1}London theory}{142}
{11.2.2}Theory of van\nobreakspace {}Vijfeijken and Staas}{143}
{11.2.3}Theory of Rickayzen}{144}
{11.3}Matching for the Ginzburg-Landau theory in the quasi-neutral limit}{145}
{11.3.1}Integral of motion for the slab geometry}{146}
{11.3.2}Electrostatic potential at surface}{148}
{11.4}Matching for the Ginzburg-Landau theory}{148}
{11.4.1}Integral of motion for the slab geometry -- general case}{148}
{11.4.2}Gradient terms}{150}
{11.4.3}Electrostatic potential at the surface}{151}

{12}Diamagnetic currents deep in the bulk}{155}
{12.1}Nucleation of superconductivity}{156}
{12.1.1}Linearized GL theory}{156}
{12.1.2}Nucleation magnetic field $B_{\rm c2}$}{157}
{12.2}Vortex}{158}
{12.2.1}Vortex position}{160}
{12.2.2}Elementary magnetic flux}{161}
{12.3}Abrikosov vortex lattice}{161}
{12.3.1}Condensate and magnetic field}{162}
{12.3.2}Electrostatic potential}{165}
{12.3.3}Comparing forces on super-electrons}{166}
{12.3.4}Charge transfer}{167}

{13}Electrostatic potential above a surface with vortices}{171}
{13.1}Potential on the surface}{171}
{13.1.1}Comparing surface and bulk potentials}{174}
{13.1.2}Estimates of the surface potential}{175}
{13.2}Potential at finite distance from the surface}{176}
{13.2.1}Poisson equation and boundary conditions}{176}
{13.2.2}Potential above the Abrikosov lattice}{176}
{13.3}Charge transfer at the surface}{178}
{13.3.1}Surface charge}{178}
{13.3.2}Surface dipole}{179}
{13.4}Electric field above the Abrikosov vortex lattice}{180}

{14}Layered structures}{183}
{14.1}Cutting the space in slices}{184}
{14.1.1}Layer GL wave function}{185}
{14.1.2}Layer condensation energy}{185}
{14.1.3}In-layer kinetic energy}{186}
{14.1.4}Josephson coupling}{187}
{14.1.5}Electron free energy in the layered system}{188}
{14.1.6}Condition of stability}{188}
{14.2}Lawrence-Doniach model of YBa$_2$Cu$_3$O$_7$}{190}
{14.2.1}Condensation energy}{191}
{14.2.2}Kinetic energy}{191}
{14.2.3}Electromagnetic interaction}{192}
{14.3}Equations of motion}{193}
{14.3.1}Maxwell equation}{193}
{14.3.2}Lawrence-Doniach equations}{194}
{14.3.3}Electrostatic potential}{194}

{15}Charge transfer in layered structures}{197}
{15.1}Perpendicular magnetic field}{197}
{15.1.1}Ginzburg-Landau equations}{198}
{15.1.2}Effective Ginzburg-Landau equation}{198}
{15.1.3}Mapping on a metal}{199}
{15.2}Charge transfer in the YBa$_2$Cu$_3$O$_7$}{200}
{15.2.1}Electrostatic potential of a single layer}{201}
{15.2.2}Electrostatic potential of identically perturbed layers}{202}
{15.2.3}Charge transfer}{203}
{15.3}Close to the critical temperature}{204}
{15.3.1}Electrostatic potential}{204}
{15.3.2}Quasi-neutral approximation}{204}
{15.3.3}Beyond the quasi-neutrality}{206}
{15.4}Charge transfer effect on the nuclear resonance}{207}
{15.4.1}Energy levels of nucleon}{207}
{15.4.2}Frequencies of the nuclear magnetic resonance}{208}

{16}Effect of the electrostatic field on the superconductor}{211}
{16.1}Weakly screening materials}{211}
{16.1.1}Penetration of the electric field}{211}
{16.1.2}Weakly screened penetrating electrostatic potential}{212}
{16.1.3}Effect of the surface charge on superconductivity}{213}
{16.1.4}Increased temperature of the phase transition}{214}
{16.2}Strong screening}{216}
{16.2.1}Contribution of the surface dipole to the penetration depth}{216}
{16.2.2}Reduced charge perturbation behind the surface dipole}{217}
{16.2.3}Field effect on the GL wave function}{218}
{16.3}Effective boundary condition}{219}
{16.3.1}Characteristic potential of the field effect}{221}
{16.3.2}Phase transition in thin layers under bias}{223}
{16.3.3}Reduced transition temperature of thick layers}{225}
{16.3.4}Field-induced surface superconductivity}{226}

{17}Outlook and perspectives}{229}
{A}Estimate of material parameters}{231}
{A.1}Coefficient $\partial \gamma /\partial n$}{231}
{A.1.1}Models of free electrons}{232}
{A.1.2}Increase of $\gamma $ due to interaction with lattice vibrations}{233}
{A.2}Coefficient $\partial \varepsilon _{\rm con}/\partial n$}{233}
{A.2.1}The BCS estimate}{234}
{A.2.2}McMillan formula}{235}
{A.3}Material parameters of Niobium}{236}

{B}Numerical solution}{241}
{B.1}Dimensionless notation}{241}
{B.2}Fourier representation}{243}
{B.3}Simple iteration scheme}{244}
{B.4}Accelerated iteration scheme}{244}
{B.5}Description of the Ginzburg-Landau program}{245}
{C}Internal versus applied magnetic field}{251}
{C.1}Virial theorem}{251}
{C.2}Magnetic properties of the GL theory}{253}
{C.3}Magnetic properties of the extended GL theory}{254}
{References}{257}
{Index}{263}
 Rev. Type: -
 Identifiers: eDoc: 320904
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Lecture Notes in Physics
Source Genre: Series
 Creator(s):
Beig, R., Editor
Beiglböck, W., Editor
Domke, W., Editor
Affiliations:
-
Publ. Info: -
Pages: - Volume / Issue: 733 Sequence Number: - Start / End Page: - Identifier: -