English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  All four members of the Ten-m/Odz family of transmembrane proteins form dimers

Feng, K., Zhou, X. H., Oohashi, T., Morgelin, M., Lustig, A., Hirakawa, S., et al. (2002). All four members of the Ten-m/Odz family of transmembrane proteins form dimers. Journal of Biological Chemistry, 277(29), 26128-26135.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : J. Biol. Chem.

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Feng, K., Author
Zhou, X. H., Author
Oohashi, T., Author
Morgelin, M., Author
Lustig, A., Author
Hirakawa, S., Author
Ninomiya, Y., Author
Engel, J., Author
Rauch, U., Author
Fässler, R.1, Author           
Affiliations:
1Fässler, Reinhard / Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565147              

Content

show
hide
Free keywords: -
 Abstract: Ten-m/Odz/teneurins are a new family of four distinct type II transmembrane molecules. Their extracellular domains are composed of an array of eight consecutive EGF modules followed by a large globular domain. Two of the eight modules contain only 5 instead of the typical 6 cysteine residues and have the capability to dimerize in a covalent, disulfide-linked fashion. The structural properties of the extracellular domains of all four mouse Ten-m proteins have been analyzed using secreted, recombinant molecules produced by mammalian HEK-293 cells. Electron microscopic analysis supported by analytical ultracentrifugation data revealed that the recombinant extracellular domains of all Ten-m proteins formed homodimers. SDS-PAGE analysis under non-reducing conditions as well as negative staining after partial denaturation of the molecules indicated that the globular COOH-terminal domains of Ten-m1 and -m4 contained subdomains with a pronounced stability against denaturing agents, especially when compared with the homologous domains of Ten-m2 and -m3. Co-transfection experiments of mammalian cells with two different extracellular domains revealed that Ten-m molecules have also the ability to form heterodimers, a property that, combined with alternative splicing events, allows the formation of a multitude of molecules with different characteristics from a limited set of genes.

Details

show
hide
Language(s): eng - English
 Dates: 2002-07-19
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 41711
ISI: 000176908700040
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Biological Chemistry
  Alternative Title : J. Biol. Chem.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 277 (29) Sequence Number: - Start / End Page: 26128 - 26135 Identifier: ISSN: 0021-9258