English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis

Bluemlein, K., Gruning, N. M., Feichtinger, R. G., Lehrach, H., Kofler, B., & Ralser, M. (2011). No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget, 2(5), 393-400. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21789790.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0010-78D4-1 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0010-78D5-0
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bluemlein, K.1, Author              
Gruning, N. M., Author
Feichtinger, R. G., Author
Lehrach, H.1, Author              
Kofler, B., Author
Ralser, M.1, Author              
Affiliations:
1Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433550              

Content

show
hide
Free keywords: Alternative Splicing; Cell Line, Tumor; *Cell Transformation, Neoplastic/genetics; *Gene Expression Regulation, Neoplastic; Glycolysis/genetics; Humans; Kidney/metabolism/pathology; Liver/metabolism/pathology; Lung/metabolism/pathology; Mass Spectrometry; Neoplasms/*enzymology/genetics; Oxidative Phosphorylation; Protein Isoforms/genetics/*metabolism; Pyruvate Kinase/genetics/*metabolism; Thyroid Gland/metabolism/pathology
 Abstract: The Warburg effect describes the circumstance that tumor cells preferentially use glycolysis rather than oxidative phosphorylation for energy production. It has been reported that this metabolic reconfiguration originates from a switch in the expression of alternative splice forms (PKM1 and PKM2) of the glycolytic enzyme pyruvate kinase (PK), which is also important for malignant transformation.However, analytical evidence for this assumption was still lacking. Using mass spectrometry, we performed an absolute quantification of PKM1 and PKM2 splice isoforms in 25 human malignant cancers, 6 benign oncocytomas, tissue matched controls, and several cell lines. PKM2 was the prominent isoform in all analyzed cancer samples and cell lines. However, this PKM2 dominance was not a result of a change in isoform expression, since PKM2 was also the predominant PKM isoform in matched control tissues. In unaffected kidney, lung, liver, and thyroid, PKM2 accounted for a minimum of 93% of total PKM, for 80% - 96% of PKM in colon,and 55% - 61% of PKM in bladder. Similar results were obtained for a panel of tumor and non-transformed cell lines, where PKM2 was the predominant form.Thus, our results reveal that an exchange in PKM1 to PKM2 isoform expression during cancer formation is not occurring, nor do these results support conclusions that PKM2 is specific for proliferating, and PKM1 for non-proliferating tissue.

Details

show
hide
Language(s):
 Dates: 2011
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Oncotarget
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 2 (5) Sequence Number: - Start / End Page: 393 - 400 Identifier: ISSN: 1949-2553 (Electronic) 1949-2553 (Linking)