English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Cloning, tissue expression analysis, and functional characterization of two Δ6-desaturase variants of sea bass (Dicentrarchus labrax L.)

Santigosa, E., Geay, F., Tonon, T., Le Delliou, H., Kuhl, H., Reinhardt, R., et al. (2010). Cloning, tissue expression analysis, and functional characterization of two Δ6-desaturase variants of sea bass (Dicentrarchus labrax L.). Marine Biotechnology, 2010, epub-epub. doi:10.1007/s10126-010-9264-4.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : Mar Biotechnol

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Santigosa, Ester, Author
Geay, Florian, Author
Tonon, Thierry, Author
Le Delliou, Herve, Author
Kuhl, Heiner1, Author           
Reinhardt, Richard2, Author           
Corcos, Laurent, Author
Cahu, Chantal, Author
Zambonino-Infante, José Luis, Author
Mazurais, David, Author
Affiliations:
1Sequencing (Head: Bernd Timmermann), Scientific Service (Head: Manuela B. Urban), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479670              
2High Throughput Technologies, Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433552              

Content

show
hide
Free keywords: Sea bass (Dicentrarchus labrax); Desaturase; HUFA biosynthesis; Fish; EPA
 Abstract: Fish are the main source of the n-3 highly unsaturated fatty acids, which are crucial for human health. Their synthesis from C18 precursors is mediated by desaturases and elongases, but the activity of these enzymes has not been conclusively established in marine fish species. This study reports the cloning, tissue expression, and functional characterization of a sea bass (Dicentrarchus labrax L.) Δ6-desaturase and one of its splicing variants. Two cDNAs with open reading frames of 1,346 and 1,354 bp were cloned and named D6D and D6D-V, respectively. Both deduced protein sequences (445 and 387 amino acids, respectively) contained two transmembrane regions and the N-terminal cytochrome b5 domain with the HPGG motif characteristic of microsomal desaturases. D6D presents three histidine-rich regions, whereas in D6D-V, an insertion of eight nucleotides in the boundaries of exons 10 and 11 modified the third histidine-rich domain and led to insertion of a premature STOP codon, resulting in a shorter predicted protein. Quantitative real-time polymerase chain reaction assay of gene expression showed that D6D was highly expressed in the brain and intestine, and to a lesser extent, in muscle and liver; meanwhile, D6D-V was expressed in all tissues tested, but at level at least 200-fold lower than D6D. Functional analysis in yeast showed that sea bass D6D encodes a fully functional Δ6-desaturase with no residual Δ5-desaturase activity. This desaturase does not exhibit a clear preference for n-3 versus n-6 C18 substrates. Interestingly, D6D-V is a nonfunctional protein, suggesting that the C-terminal end is indispensable for protein activity.

Details

show
hide
Language(s): eng - English
 Dates: 2010-03-23
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Marine Biotechnology
  Alternative Title : Mar Biotechnol
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 2010 Sequence Number: - Start / End Page: epub - epub Identifier: ISSN: 1436-2228