English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Denoising inferred functional association networks obtained by gene fusion analysis

Kamburov, A., Goldovsky, L., Freilich, S., Kapazoglou, A., Kunin, V., Enright, A. J., et al. (2007). Denoising inferred functional association networks obtained by gene fusion analysis. BMC Genomics, 8, 460-460. doi:10.1186/1471-2164-8-460.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0010-80FF-2 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0010-8100-3
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kamburov, Atanas1, Author              
Goldovsky, Leon, Author
Freilich, Shiri, Author
Kapazoglou, Aliki, Author
Kunin, Victor, Author
Enright, Anton J., Author
Tsaftaris, Athanasios, Author
Ouzounis, Christos A., Author
Affiliations:
1Bioinformatics (Ralf Herwig), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479648              

Content

show
hide
Free keywords: -
 Abstract: Background Gene fusion detection – also known as the 'Rosetta Stone' method – involves the identification of fused composite genes in a set of reference genomes, which indicates potential interactions between its un-fused counterpart genes in query genomes. The precision of this method typically improves with an ever-increasing number of reference genomes. Results In order to explore the usefulness and scope of this approach for protein interaction prediction and generate a high-quality, non-redundant set of interacting pairs of proteins across a wide taxonomic range, we have exhaustively performed gene fusion analysis for 184 genomes using an efficient variant of a previously developed protocol. By analyzing interaction graphs and applying a threshold that limits the maximum number of possible interactions within the largest graph components, we show that we can reduce the number of implausible interactions due to the detection of promiscuous domains. With this generally applicable approach, we generate a robust set of over 2 million distinct and testable interactions encompassing 696,894 proteins in 184 species or strains, most of which have never been the subject of high-throughput experimental proteomics. We investigate the cumulative effect of increasing numbers of genomes on the fidelity and quantity of predictions, and show that, for large numbers of genomes, predictions do not become saturated but continue to grow linearly, for the majority of the species. We also examine the percentage of component (and composite) proteins with relation to the number of genes and further validate the functional categories that are highly represented in this robust set of detected genome-wide interactions. Conclusion We illustrate the phylogenetic and functional diversity of gene fusion events across genomes, and their usefulness for accurate prediction of protein interaction and function.

Details

show
hide
Language(s): eng - English
 Dates: 2007-12-14
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: BMC Genomics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 8 Sequence Number: - Start / End Page: 460 - 460 Identifier: ISSN: 1471-2164