Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem

Tkatchenko, A., Ambrosetti, A., & DiStasio, R. A. (2013). Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem. The Journal of Chemical Physics, 138(7): 074106. doi:10.1063/1.4789814.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1210.8343v1.pdf (Preprint), 206KB
Name:
1210.8343v1.pdf
Beschreibung:
File downloaded from arXiv at 2013-08-02
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2013
Copyright Info:
AIP
:
1.4789814.pdf (Verlagsversion), 458KB
Name:
1.4789814.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2013
Copyright Info:
AIP
Lizenz:
OA Nationallizenz

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Tkatchenko, Alexandre1, Autor           
Ambrosetti, Alberto1, Autor           
DiStasio, Robert A.2, Autor
Affiliations:
1Theory, Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin, DE, ou_634547              
2Department of Chemistry, Princeton University, , Princeton, New Jersey 08544, USA, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: PolarizabilityDensity functional theoryMany body problemsDisperse systemsAdiabatic theoremEigenvaluesDatabasesElectric dipole momentsEnergy efficiencyTensor methods
 Zusammenfassung: Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory calculations. However, when applied to more than two atoms, these methods are still frequently perceived to be based on ad hoc assumptions, rather than a rigorous derivation from quantum mechanics. Starting from the adiabatic connection fluctuationdissipation (ACFD) theorem, an exact expression for the electronic exchange-correlation energy, we demonstrate that the pairwise interatomic dispersion energy for an arbitrary collection of isotropic polarizable dipoles emerges from the second-order expansion of the ACFD formula upon invoking the random-phase approximation (RPA) or the full-potential approximation. Moreover, for a system of quantum harmonic oscillators coupled through a dipole-dipole potential, we prove the equivalence between the full interaction energy obtained from the Hamiltonian diagonalization and the ACFDRPA correlation energy. This property makes the Hamiltonian diagonalization an efficient method for the calculation of the many-body dispersion energy. In addition, we show that the switching function used to damp the dispersion interaction at short distances arises from a short-range screened Coulomb potential, whose role is to account for the spatial spread of the individual atomic dipole moments. By using the ACFD formula, we gain a deeper understanding of the approximations made in the interatomic pairwise approaches, providing a powerful formalism for further development of accurate and efficient methods for the calculation of the dispersion energy. © 2013 American Institute of Physics.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012-10-312013-01-162013-01-192013-02-21
 Publikationsstatus: Erschienen
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/1.4789814
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : VDW-CMAT - Van der Waals Interactions in Complex Materials
Grant ID : 278205
Förderprogramm : Funding Programme 7 (FP7)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Chemical Physics
  Andere : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Institute of Physics
Seiten: - Band / Heft: 138 (7) Artikelnummer: 074106 Start- / Endseite: - Identifikator: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226