Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Consistent segmentation using a Rician classifier

Roy, S., Carass, A., Bazin, P.-L., Resnick, S., & Prince, J. L. (2012). Consistent segmentation using a Rician classifier. Medical Image Analysis, 16(2), 524-535. doi:10.1016/j.media.2011.12.001.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Roy_2012_Consistent.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
Roy_2012_Consistent.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Roy, Snehashis1, Autor
Carass, Aaron1, Autor
Bazin, Pierre-Louis2, Autor           
Resnick, Susan3, Autor
Prince, Jerry L.1, Autor
Affiliations:
1Image Analysis and Communication Laboratory, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA, ou_persistent22              
2Department Neurophysics, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634550              
3Intramural Research Program, National Institute on Aging, Baltimore, MD, USA, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Medical image segmentation; Tissue classification; Rician distribution; Biomedical imaging
 Zusammenfassung: Several popular classification algorithms used to segment magnetic resonance brain images assume that the image intensities, or log-transformed intensities, satisfy a finite Gaussian mixture model. In these methods, the parameters of the mixture model are estimated and the posterior probabilities for each tissue class are used directly as soft segmentations or combined to form a hard segmentation. It is suggested and shown in this paper that a Rician mixture model fits the observed data better than a Gaussian model. Accordingly, a Rician mixture model is formulated and used within an expectation maximization (EM) framework to yield a new tissue classification algorithm called Rician Classifier using EM (RiCE). It is shown using both simulated and real data that RiCE yields comparable or better performance to that of algorithms based on the finite Gaussian mixture model. As well, we show that RiCE yields more consistent segmentation results when used on images of the same individual acquired with different T1-weighted pulse sequences. Therefore, RiCE has the potential to stabilize segmentation results in brain studies involving heterogeneous acquisition sources as is typically found in both multi-center and longitudinal studies.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2011-11-302010-11-022011-12-022011-12-132012-02
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.media.2011.12.001
PMID: 22204754
PMC: PMC3267889
Anderer: Epub 2011
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Medical Image Analysis
  Andere : Med. Image Anal.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Elsevier
Seiten: - Band / Heft: 16 (2) Artikelnummer: - Start- / Endseite: 524 - 535 Identifikator: ISSN: 1361-8415
CoNE: https://pure.mpg.de/cone/journals/resource/954927741859