hide
Free keywords:
-
Abstract:
Background. New vaccines against tuberculosis (TB) are urgently needed because the only available vaccine, Mycobacterium bovis bacillus Calmette-Guerin (BCG), fails to protect against pulmonary TB in adults. The recombinant Delta ureC hly+ BCG (rBCG) is more efficient than parental BCG (pBCG) against pulmonary TB in preclinical studies and has proven safe and immunogenic in phase I clinical trials. Methods. In an attempt to identify the mechanisms underlying the superior protection of rBCG, we compared the immune responses elicited after vaccination and subsequent aerosol infection with Mycobacterium tuberculosis (MTB) in mice. Results. We demonstrate that both rBCG and pBCG induce marked type 1 cytokine responses, whereas only rBCG elicits a profound type 17 cytokine response in addition. We observed earlier recruitment of antigen-specific T lymphocytes to the lung upon MTB infection of rBCG-vaccinated mice. These T cells produced abundant type 1 cytokines after restimulation, resulting in 10-fold reduced bacterial burden 90 days after infection. Conclusions. Our findings identify a general immunologic pathway for improved vaccination strategies against TB that can also be harnessed by other vaccine candidates.