English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Satellite observation of El Nino effects on Amazon forest phenology and productivity

Asner, G. P., Townsend, A. R., & Braswell, B. H. (2000). Satellite observation of El Nino effects on Amazon forest phenology and productivity. Geophysical Research Letters, 27(7), 981-984. doi:10.1029/1999GL011113.

Item is

Files

show Files
hide Files
:
BGC0203.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
BGC0203.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1029/1999GL011113 (Publisher version)
Description:
OA

Creators

show
hide
 Creators:
Asner, G. P., Author
Townsend, A. R., Author
Braswell, B. H.1, Author              
Affiliations:
1Department Biogeochemical Systems, Prof. D. Schimel, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497754              

Content

show
hide
Free keywords: Basin Deforestation Temperature Pastures Climate
 Abstract: Climate variability may affect the functioning of Amazon moist tropical forests, and recent modeling analyses suggest that the carbon dynamics of the region vary interannually in response to precipitation and temperature anomalies. However, due to persistent orbital and atmospheric artifacts in the satellite record, remote sensing observations have not provided quantitative evidence that climate variation affects Amazon forest phenology or productivity. We developed a method to minimize and quantify non-biological artifacts in NOAA AVHRR satellite data, providing a record of estimated forest phenological variation from 1982-1993. The seasonal NDVI amplitude (a proxy for phenology) increased throughout much of the basin during El Nino periods when rainfall was anomalously low. Wetter La Nina episodes brought consistently smaller NDVI amplitudes. Using radiative transfer and terrestrial biogeochemical models driven by these satellite data, we estimate that canopy energy absorption and net primary production of Amazon forests varied interannually by as much as 21% and 18%, respectively. These results provide large-scale observational evidence for interannual sensitivity to El Nino of plant phenology and carbon flux in Amazon forests. [References: 34]

Details

show
hide
Language(s):
 Dates: 2000
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0203
DOI: 10.1029/1999GL011113
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Research Letters
  Abbreviation : GRL
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Geophysical Union
Pages: - Volume / Issue: 27 (7) Sequence Number: - Start / End Page: 981 - 984 Identifier: ISSN: 0094-8276
CoNE: https://pure.mpg.de/cone/journals/resource/954925465217