English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Global monsoons in the mid-Holocene and oceanic feedback

Liu, Z., Harrison, S. P., Kutzbach, J., & Otto-Bliesner, B. (2004). Global monsoons in the mid-Holocene and oceanic feedback. Climate Dynamics, 22(2-3), 157-182.

Item is

Files

show Files
hide Files
:
BGC0673.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
BGC0673.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Liu, Z., Author
Harrison, S. P.1, Author           
Kutzbach, J., Author
Otto-Bliesner, B., Author
Affiliations:
1Research Group Paleo-Climatology, Dr. S. P. Harrison, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497765              

Content

show
hide
Free keywords: Climate-system-model New-south-wales Quaternary environmental-change Australian summer monsoon North-american monsoon 9000 years bp Late pleistocene African monsoon Middle holocene Lake amadeus
 Abstract: The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean-atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations. [References: 135]

Details

show
hide
Language(s):
 Dates: 2004
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0673
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Climate Dynamics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Heidelberg : Springer-International
Pages: - Volume / Issue: 22 (2-3) Sequence Number: - Start / End Page: 157 - 182 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925568800
ISSN: 0930-7575