English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Species evenness and productivity in experimental plant communities

Mulder, C. P. H., Bazeley-White, E., Dimitrakopoulos, P. G., Hector, A., Scherer-Lorenzen, M., & Schmid, B. (2004). Species evenness and productivity in experimental plant communities. Oikos, 107(1), 50-63. doi:10.1111/j.0030-1299.2004.13110.x.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-000E-D1F8-6 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-A56F-9
Genre: Journal Article

Files

show Files
hide Files
:
BGC0722.pdf (Publisher version), 405KB
 
File Permalink:
-
Name:
BGC0722.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Mulder, C. P. H., Author
Bazeley-White, E., Author
Dimitrakopoulos, P. G., Author
Hector, A., Author
Scherer-Lorenzen, M.1, Author              
Schmid, B., Author
Affiliations:
1Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497751              

Content

show
hide
Free keywords: Grassland ecosystems Herbaceous perennials Relative abundance Tallgrass prairie Diversity Biodiversity Biomass Competition Extinction Nitrogen
 Abstract: In nature, plant biomass is not evenly distributed across species, and naturally uncommon species may differ from common species in the probability of loss from the community. Understanding relationships between evenness and productivity is therefore critical to understanding changes in ecosystem functioning as species are lost from communities. We examined data from a large multi-site grassland experiment (BIODEPTH) for relationships between evenness of species composition (proportional abundance of biomass) and total biomass of communities. For plots which started with the same and even species composition, but which diverged in evenness over time, those with lower evenness had a significantly greater biomass. The relationship between evenness and biomass across all plots was also negative. However, for communities where the most common species represented one of the three largest species in monoculture at that site (inclusion of a large dominant species), the relationship was neutral. Path analyses indicated that three paths contributed to this negative relationship. First, higher species richness decreased evenness, but increased biomass (primarily through an increase in maximum plant size). Contrary to predictions, maximum plant size had either no effect on evenness, or a positive effect (in year 3 plots with a large dominant species), thereby reducing this relationship. In year 2, large variation among species in plant size (as measured in monoculture) both decreased evenness and increased biomass, thus increasing the strength of the negative relationship between evenness and biomass. However, the former effect was only found in plots with a large dominant species, the latter only in plots without a large dominant species. When species richness, maximum plant size, and variation in size were accounted for, in year 2 evenness positively affected biomass in plots that included a large dominant species. Our results are consistent with the view that naturally uncommon species may be unaffected by (or even benefit from) the presence of a large naturally common species, and that uncommon plants may have little ability to increase productivity in the absence of such a species. We conclude that the observed negative relationship between evenness and biomass resulted from multiple direct and indirect effects, the relative strength of which depended in part on the presence of large dominant species. [References: 68]

Details

show
hide
Language(s):
 Dates: 2004
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: Other: BGC0722
DOI: 10.1111/j.0030-1299.2004.13110.x
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Oikos
  Other : Oikos
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Copenhagen : Munksgaard International Publishers
Pages: - Volume / Issue: 107 (1) Sequence Number: - Start / End Page: 50 - 63 Identifier: ISSN: 1600-0706 (online)
ISSN: 0030-1299 (print)
CoNE: /journals/resource/110978977736795