English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model

Manizza, M., Le Quéré, C., Watson, A. J., & Buitenhuis, E. T. (2005). Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophysical Research Letters, 32(5), L05603. doi:10.1029/2004GL020778.

Item is

Files

show Files
hide Files
:
BGC0783.pdf (Publisher version), 188KB
 
File Permalink:
-
Name:
BGC0783.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1029/2004GL020778 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Manizza, M.1, Author           
Le Quéré, C.1, Author           
Watson, A. J., Author
Buitenhuis, E. T.1, Author           
Affiliations:
1Department Biogeochemical Synthesis, Prof. C. Prentice, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497753              

Content

show
hide
Free keywords: General-circulation model Equatorial pacific Surface-temperature Solar-radiation Arabian sea Climate
 Abstract: Phytoplankton biomass modifies the penetration of light and impacts the physical properties of the upper ocean. We quantify these impacts and the feedbacks on phytoplankton biomass for the global ocean using an Ocean General Circulation Model coupled to an ocean biogeochemistry model. Phytoplankton biomass amplifies the seasonal cycle of temperature, mixed layer depth and ice cover by roughly 10%. At mid and high latitudes, surface temperature warms by 0.1 - 1.5 degrees C in spring/ summer and cools by 0.1 - 0.3 degrees C in fall/ winter. In the tropics, phytoplankton biomass indirectly cools the ocean surface by 0.3 degrees C due to enhanced upwelling. The mixed layer stratifies by 4 - 30 m everywhere except at high latitudes. At high latitudes, the sea- ice cover is reduced by up to 6% in summer and increased by 2% in winter, leading to further feedbacks on vertical mixing and heat fluxes. Physical changes drive a positive feedback increasing phytoplankton biomass by 4 - 12% and further amplifies the initial physical perturbations. [References: 23]

Details

show
hide
Language(s):
 Dates: 2005
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2004GL020778
Other: BGC0783
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Research Letters
  Abbreviation : GRL
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Geophysical Union
Pages: - Volume / Issue: 32 (5) Sequence Number: - Start / End Page: L05603 Identifier: ISSN: 0094-8276
CoNE: https://pure.mpg.de/cone/journals/resource/954925465217