hide
Free keywords:
Extensively managed grassland
Symbiotic n-2 fixation
Plant diversity
Nutrient availability
Altitudinal gradient
Ecosystem responses
Deposition
Soil
Biodiversity
N2O
Abstract:
Previous research has shown that plant diversity influences N and P cycles. However, the effect of plant diversity on complete ecosystem N and P budgets has not yet been assessed. For 20 plots of artificially established grassland mixtures differing in plant diversity, we determined N and P inputs by bulk and dry deposition and N and P losses by mowing (and subsequent removal of the biomass) and leaching from April 2003 to March 2004. Total deposition of N and P was 2.3 +/- 0.1 and 0.2 +/- 0.01 g m(-2) yr(-1), respectively. Mowing was the main N and P loss. The net N and P budgets were negative (-6.3 +/- 1.1 g N and -1.9 +/- 0.2 g P m(-2) yr(-1)). For N, this included a conservative estimate of atmospheric N-2 fixation. Nitrogen losses as N2O were expected to be small at our study site (< 0.05 g m(-2) yr(-1)). Legumes increased the removal of N with the harvest and decreased leaching of NH4-N and dissolved organic nitrogen (DON) from the canopy. Reduced roughness of grass-containing mixtures decreased dry deposition of N and P. Total dissolved P and NO3-N leaching from the canopy increased in the presence of grasses attributable to the decreased N and P demand of grass-containing mixtures. Species richness did not have an effect on any of the studied fluxes. Our results demonstrate that the N and P fluxes in managed grassland are modified by the presence or absence of particular functional plant groups and are mainly driven by the management. [References: 58]