hide
Free keywords:
stable carbon isotopes
soil microbial communities
phospholipid fatty
acids
gram-negative bacteria
gram-positive bacteria
compound
specific isotope
LONG-TERM MAIZE
FATTY-ACIDS
COMMUNITY COMPOSITION
NATURAL C-13
ABUNDANCE
ISOTOPES
DYNAMICS
BIODEGRADABILITY
FRACTIONATION
RHIZOSPHERE
Abstract:
This study investigates how carbon sources of soil microbial communities vary with soil depth. Microbial phospholipid fatty acids (PLFA) were extracted from 0-20, 20-40 and 40-60cm depth intervals from agricultural soils and analysed for their stable carbon isotopes (delta C-13 values). The soils had been subjected to a vegetation change from C3 (delta C-13 approximate to-29.3 parts per thousand) to C4 plants (delta C-13 approximate to-12.5 parts per thousand) 40 years previously, which allowed us to trace the carbon flow from plant-derived input (litter, roots, and root exudates) into microbial PLFA. While bulk soil organic matter (SOM) reflected approximate to 12% of the C4-derived carbon in top soil (0-20cm) and 3% in deeper soil (40-60 cm), the PLFA had a much higher contribution of C4 carbon of about 64% in 0-20 cm and 34% in 40-60 cm. This implies a much faster turnover time of carbon in the microbial biomass compared to bulk SOM. The isotopic signature of bulk SOM and PLFA from C4 cultivated soil decreases with increasing soil depth (-23.7 parts per thousand to -25.0 parts per thousand for bulk SOM and -18.3 parts per thousand to -23.3 parts per thousand for PLFA), which demonstrates decreasing influence of the isotopic signature of the new C4 vegetation with soil depth. In terms of soil microbial carbon sources this clearly shows a high percentage of C4 labelled and thus young plant carbon as microbial carbon source in topsoils. With increasing soil depth this percentage decreases and SOM is increasingly used as microbial carbon source. Among all PLFA that were associated to different microbial groups it could be observed that (a) depended on availability, Gram-negative and Gram-positive bacteria prefer plant-derived carbon as carbon source, however, (b) Gram-positive bacteria use more SOM-derived carbon sources while Gram-negative bacteria use more plant biomass. This tendency was observed in all three-depth intervals. However, our results also show that microorganisms maintain their preferred carbon sources independent on soil depth with an isotopic shift of 3-4 parts per thousand from 0-20 to 40-60 cm soil depth. (c) 2007 Elsevier Ltd. All rights reserved.