English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands

Rascher, U., Agati, G., Alonso, L., Cecchi, G., Champagne, S., Colombo, R., et al. (2009). CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands. Biogeosciences, 6(7), 1181-1198. doi:10.5194/bg-6-1181-2009.

Item is

Files

show Files
hide Files
:
BGC1257.pdf (Publisher version), 11MB
Name:
BGC1257.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/octet-stream / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
BGC1257D.pdf (Preprint), 4MB
Name:
BGC1257D.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/octet-stream / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.5194/bg-6-1181-2009 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Rascher, U., Author
Agati, G., Author
Alonso, L., Author
Cecchi, G., Author
Champagne, S., Author
Colombo, R., Author
Damm, A., Author
Daumard, F., Author
De Miguel, E., Author
Fernandez, G., Author
Franch, B., Author
Franke, J., Author
Gerbig, C.1, Author           
Gioli, B., Author
Gomez, J. A., Author
Goulas, Y., Author
Guanter, L., Author
Gutierrez-De-La-Camara, O., Author
Hamdi, K., Author
Hostert, P., Author
Jimenez, M., AuthorKosvancova, M., AuthorLognoli, D., AuthorMeroni, M., AuthorMiglietta, F., AuthorAl., Et, Author more..
Affiliations:
1Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497784              

Content

show
hide
Free keywords: Induced chlorophyll fluorescence Gross primary production Light-use efficiency Steady-state Water-stress Reflectance Field Heterogeneity Dynamics Boreal
 Abstract: The CEFLES2 campaign during the Carbo Europe Regional Experiment Strategy was designed to provide simultaneous airborne measurements of solar induced fluorescence and CO2 fluxes. It was combined with extensive ground-based quantification of leaf- and canopy-level processes in support of ESA's Candidate Earth Explorer Mission of the 'Fluorescence Explorer' (FLEX). The aim of this campaign was to test if fluorescence signal detected from an airborne platform can be used to improve estimates of plant mediated exchange on the mesoscale. Canopy fluorescence was quantified from four airborne platforms using a combination of novel sensors: (i) the prototype airborne sensor AirFLEX quantified fluorescence in the oxygen A and B bands, (ii) a hyperspectral spectrometer (ASD) measured reflectance along transects during 12 day courses, (iii) spatially high resolution georeferenced hyperspectral data cubes containing the whole optical spectrum and the thermal region were gathered with an AHS sensor, and (iv) the first employment of the high performance imaging spectrometer HYPER delivered spatially explicit and multi-temporal transects across the whole region. During three measurement periods in April, June and September 2007 structural, functional and radiometric characteristics of more than 20 different vegetation types in the Les Landes region, Southwest France, were extensively characterized on the ground. The campaign concept focussed especially on quantifying plant mediated exchange processes (photosynthetic electron transport, CO2 uptake, evapotranspiration) and fluorescence emission. The comparison between passive sun-induced fluorescence and active laser-induced fluorescence was performed on a corn canopy in the daily cycle and under desiccation stress. Both techniques show good agreement in detecting stress induced fluorescence change at the 760 nm band. On the large scale, airborne and ground-level measurements of fluorescence were compared on several vegetation types supporting the scaling of this novel remote sensing signal. The multi-scale design of the four airborne radiometric measurements along with extensive ground activities fosters a nested approach to quantify photosynthetic efficiency and gross primary productivity (GPP) from passive fluorescence. [References: 44]

Details

show
hide
Language(s): eng - English
 Dates: 2009
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC1257
DOI: 10.5194/bg-6-1181-2009
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biogeosciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : Copernicus GmbH on behalf of the European Geosciences Union
Pages: - Volume / Issue: 6 (7) Sequence Number: - Start / End Page: 1181 - 1198 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/111087929276006
ISSN: 1726-4170