English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The problem of the second wind turbine – a note on a common but flawed wind power estimation method

Gans, F., Miller, L. M., & Kleidon, A. (2012). The problem of the second wind turbine – a note on a common but flawed wind power estimation method. Earth System Dynamics, 3, 79-86. doi:10.5194/esd-3-79-2012.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-000E-DD37-D Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0026-B805-1
Genre: Journal Article

Files

show Files
hide Files
:
BGC1675.pdf (Publisher version), 2MB
Name:
BGC1675.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/octet-stream / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
BGC1675D.pdf (Preprint), 2MB
Name:
BGC1675D.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/octet-stream / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.5194/esd-3-79-2012 (Publisher version)
Description:
OA

Creators

show
hide
 Creators:
Gans, F.1, Author              
Miller, L. M.1, Author              
Kleidon, A.2, Author              
Affiliations:
1Energy and Earth System, Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497790              
2Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497761              

Content

show
hide
Free keywords: -
 Abstract: Several recent wind power estimates suggest that this renewable energy resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. However, this approach neglects the effects of momentum extraction by the turbines on the atmospheric flow that would have effects outside the turbine wake. Here we show with a simple momentum balance model of the atmospheric boundary layer that this common methodology to derive wind power potentials requires unrealistically high increases in the generation of kinetic energy by the atmosphere. This increase by an order of magnitude is needed to ensure momentum conservation in the atmospheric boundary layer. In the context of this simple model, we then compare the effect of three different assumptions regarding the boundary conditions at the top of the boundary layer, with prescribed hub height velocity, momentum transport, or kinetic energy transfer into the boundary layer. We then use simulations with an atmospheric general circulation model that explicitly simulate generation of kinetic energy with momentum conservation. These simulations show that the assumption of prescribed momentum import into the atmospheric boundary layer yields the most realistic behavior of the simple model, while the assumption of prescribed hub height velocity can clearly be disregarded. We also show that the assumptions yield similar estimates for extracted wind power when less than 10% of the kinetic energy flux in the boundary layer is extracted by the turbines. We conclude that the common method significantly overestimates wind power potentials by an order of magnitude in the limit of high wind power extraction. Ultimately, environmental constraints set the upper limit on wind power potential at larger scales rather than detailed engineering specifications of wind turbine design and placement.

Details

show
hide
Language(s):
 Dates: 2012
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/esd-3-79-2012
Other: BGC1675
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Earth System Dynamics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : Copernicus GmbH
Pages: - Volume / Issue: 3 Sequence Number: - Start / End Page: 79 - 86 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/2190-4979