Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?

Kleidon, A. (2012). How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet? Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences, 370(1962), 1012-1040. doi:10.1098/rsta.2011.0316.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BGC1638.pdf (Verlagsversion), 604KB
 
Datei-Permalink:
-
Name:
BGC1638.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Typ / Prüfsumme:
application/octet-stream
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://dx.doi.org/10.1098/rsta.2011.0316 (Verlagsversion)
Beschreibung:
OA
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Kleidon, A.1, Autor           
Affiliations:
1Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497761              

Inhalt

einblenden:
ausblenden:
Schlagwörter: habitability free energy thermodynamics global change geoengineering maximum-entropy production human appropriation nonequilibrium thermodynamics production principle fluctuation theorem global climate heat-transport 2nd law life circulation
 Zusammenfassung: The Earth's chemical composition far from chemical equilibrium is unique in our Solar System, and this uniqueness has been attributed to the presence of widespread life on the planet. Here, I show how this notion can be quantified using non-equilibrium thermodynamics. Generating and maintaining disequilibrium in a thermodynamic variable requires the extraction of power from another thermodynamic gradient, and the second law of thermodynamics imposes fundamental limits on how much power can be extracted. With this approach and associated limits, I show that the ability of abiotic processes to generate geochemical free energy that can be used to transform the surface-atmosphere environment is strongly limited to less than 1TW. Photosynthetic life generates more than 200TW by performing photochemistry, thereby substantiating the notion that a geochemical composition far from equilibrium can be a sign for strong biotic activity. Present-day free energy consumption by human activity in the form of industrial activity and human appropriated net primary productivity is of the order of 50TW and therefore constitutes a considerable term in the free energy budget of the planet. When aiming to predict the future of the planet, we first note that since global changes are closely related to this consumption of free energy, and the demands for free energy by human activity are anticipated to increase substantially in the future, the central question in the context of predicting future global change is then how human free energy demands can increase sustainably without negatively impacting the ability of the Earth system to generate free energy. This question could be evaluated with climate models, and the potential deficiencies in these models to adequately represent the thermodynamics of the Earth system are discussed. Then, I illustrate the implications of this thermodynamic perspective by discussing the forms of renewable energy and planetary engineering that would enhance the overall free energy generation and, thereby 'empower' the future of the planet.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1098/rsta.2011.0316
ISI: ://WOS:000300315900002
Anderer: BGC1638
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Royal Society
Seiten: - Band / Heft: 370 (1962) Artikelnummer: - Start- / Endseite: 1012 - 1040 Identifikator: ISSN: 1364-503X
CoNE: https://pure.mpg.de/cone/journals/resource/954928604111_1