日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Interactions in tropical reforestation - how plant defence and polycultures can reduce growth-limiting herbivory

Massad, T. J. (2012). Interactions in tropical reforestation - how plant defence and polycultures can reduce growth-limiting herbivory. Applied Vegetation Science, 15(3), 338-348. doi:10.1111/j.1654-109X.2012.01185.x.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
BGC1683.pdf (出版社版), 305KB
 
ファイルのパーマリンク:
-
ファイル名:
BGC1683.pdf
説明:
-
OA-Status:
閲覧制限:
制限付き (Max Planck Institute for Biogeochemistry, MJBK; )
MIMEタイプ / チェックサム:
application/octet-stream
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Massad, T. J.1, 著者           
所属:
1Impact of Fire on Plant Diversity in the Amazon Forest, Dr. T. Massad, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497782              

内容説明

表示:
非表示:
キーワード: Atta cephalotes Growth Herbivore Leaf toughness Plant defence Polyculture Restoration Saponins cephalotes l hymenoptera tree species-diversity leaf-cutting ants rain-forest trees costa-rica atta-cephalotes associational susceptibility abandoned pasture plantations selection
 要旨: Questions Can the growth of saplings be improved by limiting herbivory during reforestation? Can chemical ecology and diverse planting designs be applied to decrease herbivory in tropical reforestation? Location Reforestation plantings in Heredia, Costa Rica. Methods This study directly evaluates the effects of herbivory on seedling growth and the role of two putative plant defences, saponins and leaf toughness, in limiting herbivory in reforestation. Four planting treatments were studied in a replicated block design in cattle pastures in Costa Rica: (1) a monoculture of a fast-growing species low in saponins (Dipteryx panamensis); (2) a monoculture of a slower-growing, saponin-rich species (Cojoba arborea); (3) a polyculture consisting of half D. panamensis and half three other defended species; and (4) a polyculture of half C. arborea and half the same other defended species. Growth and herbivory were measured every 6 mo during the first 2 yr of plot development and again after 5 yr of growth. Results Dipteryx panamensis was the fastest-growing species, and individuals planted in polycultures grew faster in terms of height than individuals in monoculture. Herbivory was negatively related to sapling growth, and damage during the first 6 mo of plot establishment decreased growth even after 5 yr. Patterns of herbivory varied through time, resulting in changes in the importance of plant defences. For example, leaf toughness, which is an effective defence against many herbivores, was negatively related to herbivory at multiple time periods. In contrast, saponins were not a deterrent to all herbivores, so they were not consistently effective as a defence; however saponins were negatively related to Atta cephalotes (leaf-cutter ant) damage. Saponins are therefore a promising defence against leaf-cutter ants but not against all herbivores. Conclusions Plantinsect interactions influence reforestation through growth-limiting herbivore pressure on seedlings, and this herbivory is likely facilitated by reforestation methods that favour monocultures of fast-growing species that lack strong antiherbivore defences. This study demonstrates the potential for reducing herbivory and improving sapling growth by reforesting with polycultures of fast-growing and well-defended species.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2012
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1111/j.1654-109X.2012.01185.x
ISI: ://WOS:000305936800005
その他: BGC1683
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Applied Vegetation Science
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Uppsala : Opulus Press
ページ: - 巻号: 15 (3) 通巻号: - 開始・終了ページ: 338 - 348 識別子(ISBN, ISSN, DOIなど): CoNE: https://pure.mpg.de/cone/journals/resource/110978984352353
ISSN: 1402-2001