hide
Free keywords:
Quantum Physics, quant-ph, Physics, Optics, physics.optics
Abstract:
The quantum state of light changes its nature when being reflected off a
mechanical oscillator due to the latter's susceptibility to radiation pressure.
As a result, a coherent state can transform into a squeezed state and can get
entangled with the motion of the oscillator. The complete tomographic
reconstruction of the state of light requires the ability to readout arbitrary
quadratures. Here we demonstrate such a readout by applying a balanced homodyne
detector to an interferometric position measurement of a thermally excited
high-Q silicon nitride membrane in a Michelson-Sagnac interferometer. A readout
noise of $\unit{1.9 \cdot 10^{-16}}{\metre/\sqrt{\hertz}}$ around the
membrane's fundamental oscillation mode at $\unit{133}{\kilo\hertz}$ has been
achieved, going below the peak value of the standard quantum limit by a factor
of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a
rather broad frequency range around the mechanical resonance.