English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Estimating the rotation rate in the vacuolar proton-ATPase in native yeast vacuolar membranes.

Ferencz, C., Petrovszki, P., Kóta, Z., Fodor-Ayaydin, E., Haracska, L., Bóta, A., et al. (2013). Estimating the rotation rate in the vacuolar proton-ATPase in native yeast vacuolar membranes. European Biophysics Journal, 42(2-3), 147-158. doi:10.1007/s00249-012-0871-z.

Item is

Files

show Files
hide Files
:
1711700.pdf (Publisher version), 621KB
 
File Permalink:
-
Name:
1711700.pdf
Description:
-
OA-Status:
Visibility:
Restricted (UNKNOWN id 303; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Ferencz, C., Author
Petrovszki, P., Author
Kóta, Z., Author
Fodor-Ayaydin, E., Author
Haracska, L., Author
Bóta, A., Author
Varga, Z., Author
Dér, A., Author
Marsh, D.1, Author           
Páli, T., Author
Affiliations:
1Emeritus Group of Spectroscopy and Photochemical Kinetics, MPI for Biophysical Chemistry, Max Planck Society, ou_578625              

Content

show
hide
Free keywords: -
 Abstract: The rate of rotation of the rotor in the yeast vacuolar proton-ATPase (V-ATPase), relative to the stator or steady parts of the enzyme, is estimated in native vacuolar membrane vesicles from Saccharomyces cerevisiae under standardised conditions. Membrane vesicles are formed spontaneously after exposing purified yeast vacuoles to osmotic shock. The fraction of total ATPase activity originating from the V-ATPase is determined by using the potent and specific inhibitor of the enzyme, concanamycin A. Inorganic phosphate liberated from ATP in the vacuolar membrane vesicle system, during ten min of ATPase activity at 20 °C, is assayed spectrophotometrically for different concanamycin A concentrations. A fit of the quadratic binding equation, assuming a single concanamycin A binding site on a monomeric V-ATPase (our data are incompatible with models assuming multiple binding sites), to the inhibitor titration curve determines the concentration of the enzyme. Combining this with the known ATP/rotation stoichiometry of the V-ATPase and the assayed concentration of inorganic phosphate liberated by the V-ATPase, leads to an average rate of ~10 Hz for full 360° rotation (and a range of 6–32 Hz, considering the ± standard deviation of the enzyme concentration), which, from the time-dependence of the activity, extrapolates to ~14 Hz (8–48 Hz) at the beginning of the reaction. These are lower-limit estimates. To our knowledge, this is the first report of the rotation rate in a V-ATPase that is not subjected to genetic or chemical modification and is not fixed to a solid support; instead it is functioning in its native membrane environment.

Details

show
hide
Language(s): eng - English
 Dates: 2013-03-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/s00249-012-0871-z
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: European Biophysics Journal
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 42 (2-3) Sequence Number: - Start / End Page: 147 - 158 Identifier: -