日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  A Kernel Two-Sample Test

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., & Smola, A. (2012). A Kernel Two-Sample Test. Journal of Machine Learning Research, 13, 723-773.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Gretton, A1, 著者           
Borgwardt, K1, 2, 著者           
Rasch, M, 著者           
Schölkopf, B.1, 著者           
Smola, A1, 著者           
所属:
1Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497647              
2Research Group Machine Learning and Computational Biology, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497664              

内容説明

表示:
非表示:
キーワード: Abt. Schölkopf; Forschungsgruppe Borgwardt
 要旨: We propose a framework for analyzing and comparing distributions, which we use to construct statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD). We present two distribution-free tests based on large deviation bounds for the MMD, and a third test based on the asymptotic distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear time approximations are available. Our statistic is an instance of an integral probability metric, and various classical metrics on distributions are obtained when alternative function classes are used in place of an RKHS. We apply our two-sample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.

資料詳細

表示:
非表示:
言語:
 日付: 2012-03
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): BibTex参照ID: Scholkopf2012
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Journal of Machine Learning Research
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 13 通巻号: - 開始・終了ページ: 723 - 773 識別子(ISBN, ISSN, DOIなど): -