English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses.

Boyken, J., Grønborg, M., Riedel, D., Urlaub, H., Jahn, R., & Chua, J. J. (2013). Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron, 78(2), 285-297. doi:10.1016/j.neuron.2013.02.027.

Item is

Files

show Files
hide Files
:
1752452.pdf (Publisher version), 2MB
Name:
1752452.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
1752452_Supplement_1.pdf (Supplementary material), 454KB
Name:
1752452_Supplement_1.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Creators

show
hide
 Creators:
Boyken, J.1, Author           
Grønborg, M.1, Author           
Riedel, D.2, Author           
Urlaub, H.3, Author           
Jahn, R.1, Author           
Chua, J. J.4, Author           
Affiliations:
1Department of Neurobiology, MPI for biophysical chemistry, Max Planck Society, ou_578595              
2Facility for Electron Microscopy, MPI for biophysical chemistry, Max Planck Society, ou_578615              
3Research Group of Bioanalytical Mass Spectrometry, MPI for biophysical chemistry, Max Planck Society, ou_578613              
4Research Group of Protein Trafficking in Synaptic Development and Function, MPI for Biophysical Chemistry, Max Planck Society, ou_1933287              

Content

show
hide
Free keywords: -
 Abstract: Neurotransmission involves calcium-triggered fusion of docked synaptic vesicles at specialized presynaptic release sites. While many of the participating proteins have been identified, the molecular composition of these sites has not been characterized comprehensively. Here, we report a procedure to biochemically isolate fractions highly enriched in docked synaptic vesicles. The fraction is largely free of postsynaptic proteins and most other organelles while containing most known synaptic vesicle and active zone proteins. Numerous presynaptic transmembrane proteins were also identified, together with over 30 uncharacterized proteins, many of which are evolutionarily conserved. Quantitative proteomic comparison of glutamate- and GABA-specific docking complexes revealed that, except of neurotransmitter-specific enzymes and transporters, only few proteins were selectively enriched in either fraction. We conclude that the core machinery involved in vesicle docking and exocytosis does not show compositional differences between the two types of synapses.

Details

show
hide
Language(s): eng - English
 Dates: 2013-04-24
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.neuron.2013.02.027
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Neuron
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 78 (2) Sequence Number: - Start / End Page: 285 - 297 Identifier: -