Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Seeding strategies and residence time characteristics of continuous preferential crystallization

Qamar, S., Elsner, M. P., Hussain, I., & Seidel-Morgenstern, A. (2012). Seeding strategies and residence time characteristics of continuous preferential crystallization. Chemical Engineering Science, 71, 5-17. doi:10.1016/j.ces.2011.12.030.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Qamar, S.1, 2, Autor           
Elsner, M. P.1, 3, Autor           
Hussain, I.2, Autor
Seidel-Morgenstern, A.1, 4, Autor           
Affiliations:
1Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738150              
2COMSATS Institute of Information Technology, Dep. of Mathematics, Islamabad, Pakistan, ou_persistent22              
3Georg Simon Ohm University of Applied Sciences, Nuremberg, Germany, ou_persistent22              
4Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Population balances; Continuous preferential crystallization; Fines dissolution; Seeding strategies; High resolution schemes; Goal functions
 Zusammenfassung: This contribution investigates the effects of different seeding strategies and residence time characteristics on the dynamics of a Mixed Suspension Mixed Product Removal (MSMPR) crystallizer equipped with a fines dissolution unit. For the first time continuous preferential enantioselective crystallization is investigated. The fines dissolution is included as recycle streams around the MSMPR crystallizer. Moreover, primary heterogeneous and secondary nucleation mechanisms along with size-dependent growth rates are taken into account. A semi-discrete high resolution finite volume scheme (FVS) is employed for discretizing the derivatives with respect to the length coordinate. The resulting ordinary differential equations (ODEs) are solved by a Runge–Kutta method of order four. Several numerical case studies are carried out. The results support process design and optimization. Copyright © 2011 Elsevier Ltd. All rights reserved. [accessed January 19th 2012]

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: eDoc: 576474
DOI: 10.1016/j.ces.2011.12.030
Anderer: 31/12
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chemical Engineering Science
  Andere : Chem. Eng. Sci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Pergamon
Seiten: - Band / Heft: 71 Artikelnummer: - Start- / Endseite: 5 - 17 Identifikator: ISSN: 0009-2509
CoNE: https://pure.mpg.de/cone/journals/resource/954925389239