English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Productivity, apoptosis, and infection dynamics of influenza A/PR/8 strains and A/PR/8-based reassortants

Isken, B., Genzel, Y., & Reichl, U. (2012). Productivity, apoptosis, and infection dynamics of influenza A/PR/8 strains and A/PR/8-based reassortants. Vaccine, 30(35), 5253-5261. doi:10.1016/j.vaccine.2012.05.065.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-8A54-C Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0014-A713-0
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Isken, Britta1, Author              
Genzel, Yvonne1, Author              
Reichl, Udo1, 2, Author              
Affiliations:
1Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738140              
2Otto-von-Guericke-Universität Magdeburg, ou_1738156              

Content

show
hide
Free keywords: Influenza vaccine Flow cytometry Multiplicity of infection Apoptosis Infection dynamics
 Abstract: In cell culture-based influenza vaccine production significant efforts are directed towards virus seed optimization for maximum yields. Typically, high growth reassortants (HGR) containing backbones of six gene segments of e.g. influenza A/PR/8, are generated from wild type strains. Often, however, HA and TCID50 titres obtained do not meet expectations and further optimization measures are required. Flow cytometry is an invaluable tool to improve our understanding of mechanism related to progress of infection, virus-induced apoptosis, and cell-specific productivity. In this study, we performed infections with two influenza A/PR/8 variants (from NIBSC and RKI) and two A/PR/8-based HGRs (Wisconsin-like and Uruguay-like) to investigate virus replication, apoptosis and virus titres at different multiplicities of infection (MOI 0.0001, 0.1, 3). Flow cytometric analyses showed similar dynamics in the time course of infected and apoptotic cell populations for all four tested strains at MOI 0.0001. Interestingly, higher MOI resulted in an earlier increase of the populations of infected and apoptotic cells and showed strain-specific differences. Infections with A/PR/8 NIBSC resulted in an earlier increase in both cell populations compared to A/PR/8 RKI. The Uruguay-like reassortant showed the earliest increase in the concentration of infected cells and a late induction of apoptosis at all tested MOIs. In contrast, the Wisconsin-like reassortant showed strong apoptosis induction at high MOIs resulting in reduced titres compared to lower MOI. Maximum HA titres were unaffected by changes in the MOI for the two A/PR/8 and the Uruguay-like reassortant. Maximum TCID50 titres, however, decreased with increasing MOI for all strains. Overall, infections at very low MOI (0.0001) resulted not only in similar dynamics concerning progress of infection and induction of apoptosis but also in maximum virus yields. Highest HA titres were obtained for virus seed strains combining a fast progress in infection with a late onset of apoptosis. Therefore, both factors should be considered for the establishment of robust influenza vaccine production processes. Copyright © 2012 Elsevier Ltd. All rights reserved. [accessed November 2nd 2012]

Details

show
hide
Language(s): eng - English
 Dates: 2012
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: eDoc: 626283
DOI: 10.1016/j.vaccine.2012.05.065
Other: 44/12
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Vaccine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Guildford, Surrey, UK : Elsevier
Pages: - Volume / Issue: 30 (35) Sequence Number: - Start / End Page: 5253 - 5261 Identifier: ISSN: 0264-410X
CoNE: /journals/resource/954925498091