English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Two State Estimators for the Barium Sulfate Precipitation in a Semi-Batch Reactor

Mangold, M., Bück, A., Schenkendorf, R., Steyer, C., Voigt, A., & Sundmacher, K. (2009). Two State Estimators for the Barium Sulfate Precipitation in a Semi-Batch Reactor. Chemical Engineering Science, 64(4), 646-660. doi:10.1016/j.ces.2008.05.039.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-9348-A Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0018-F906-4
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Mangold, M.1, Author              
Bück, A.1, Author              
Schenkendorf, R.1, Author              
Steyer, Christiane2, Author              
Voigt, Andreas2, 3, Author              
Sundmacher, Kai2, 3, Author              
Affiliations:
1Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738153              
2Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738151              
3Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

Content

show
hide
Free keywords: precipitation; population balance; state estimation; observer; distributed parameter system; unscented Kalman Filter; observation by online minimization
 Abstract: The on-line determination of particle property distributions by direct measurements is often difficult, because the measurement equations are not invertible or because the inverse problem is ill-posed. If the process is observable, one can use state estimation techniques in order to reconstruct unmeasurable internal states of the process. This is discussed here for a semi-batch precipitation reactor. A Square Root Unscented Kalman Filter and state estimation by online minimisation are studied for the case of a measurable average particle size. Both estimators use a one-dimensional population balance model. The two approaches are compared in simulations. Copyright © 2008 Published by Elsevier Ltd. [accessed February 2, 2009]

Details

show
hide
Language(s): eng - English
 Dates: 2009
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 366430
Other: 1/09
DOI: 10.1016/j.ces.2008.05.039
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Chemical Engineering Science
  Other : Chem. Eng. Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Pergamon
Pages: - Volume / Issue: 64 (4) Sequence Number: - Start / End Page: 646 - 660 Identifier: ISSN: 0009-2509
CoNE: /journals/resource/954925389239