English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Enzyme supported preferential crystallization of enantiopure amino acids

Würges, K., Petrusevska, K., Elsner, M. P., & Lütz, S. (2008). Enzyme supported preferential crystallization of enantiopure amino acids. Poster presented at BIWIC 2008 - 15th International Workshop on Industrial Crystallization, Magdeburg, Germany.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Würges, K.1, Author
Petrusevska, K.2, Author           
Elsner, M. P.2, Author           
Lütz, S.1, Author
Affiliations:
1Forschungszentrum Jülich, Institut für Biotechnologie Jülich, Germany, ou_persistent22              
2Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738150              

Content

show
hide
Free keywords: -
 Abstract: The production of enantiopure substances has drawn a lot of interest during the last decades. Especially intermediates for the pharmaceutical industry, fine chemicals and feed additives like L-amino acids are of great scientific and economic relevance [1, 2]. Despite an increasing number of stereoselective synthesis there are still a lot of reactions that lead to racemic mixtures of the desired homochiral products. Numerous separation techniques have been developed [3-5], but a major drawback of them is the principal yield limitation to a maximum of 50 %. We present a new approach for the production of enantiopure amino acids (AA) with a theoretical yield of 100 % that integrates preferential crystallization (PC) of a conglomerate and enzymatic in situ racemization (Fig. 1). Starting from a racemic oversaturated AA solution one enantiomer can be crystallized by seeding with homochiral crystals, which leads to an increasing enantiomeric excess (ee) of the counter enantiomer in the crystallization medium. PC is only possible as long as the medium composition remains in the metastable zone of the ternary phase system, thus crystallization of the counter enantiomer will start at a certain point. In order to prevent this, enzymatic in situ racemization can be applied which keeps the ee in the medium at a minimum. By continuous feeding of racemic AA into the system a stationary process can be obtained.

Details

show
hide
Language(s): eng - English
 Dates: 2008
 Publication Status: Not specified
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 366353
 Degree: -

Event

show
hide
Title: BIWIC 2008 - 15th International Workshop on Industrial Crystallization
Place of Event: Magdeburg, Germany
Start-/End Date: 2008-09-10 - 2008-09-12

Legal Case

show

Project information

show

Source

show