日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Experimental study of different configurations to perform preferential crystallization for enantioseparation

Ziomek, G., Elsner, M. P., & Seidel-Morgenstern, A. (2007). Experimental study of different configurations to perform preferential crystallization for enantioseparation. Poster presented at ECCE-6: 6th European Congress of Chemical Engineering, Copenhagen, Denmark.

Item is

基本情報

表示: 非表示:
資料種別: ポスター

ファイル

表示: ファイル
非表示: ファイル
:
Fig_1_Ziomek_Kopenhagen_2007.jpg (全文テキスト(全般)), 131KB
ファイルのパーマリンク:
https://hdl.handle.net/11858/00-001M-0000-0013-9751-9
ファイル名:
Fig_1_Ziomek_Kopenhagen_2007.jpg
説明:
-
OA-Status:
閲覧制限:
公開
MIMEタイプ / チェックサム:
image/jpeg / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
eDoc_access: PUBLIC
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Ziomek, G.1, 著者           
Elsner, M. P.1, 著者           
Seidel-Morgenstern, A.1, 2, 著者           
所属:
1Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738150              
2Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

内容説明

表示:
非表示:
キーワード: Enantioseparation; Process intensification; Crystallization; Optimization
 要旨: The separation of chiral compounds is of large interest since most of the (bio-)organic molecules are chiral. Usually only one of the enantiomers shows the wanted properties with regard to therapeutic activities or metabolism, whereas the other enantiomer may be inactive or may even cause some undesired effects (Jacques et al., 1994). In recent years, besides the most commonly used classical resolution via formation of diastereomers, direct crystallization methods have become increasingly important. An attractive process is enantioselective preferential crystallization (Elsner et al., 2005) In a batch crystallizer racemic mixture of conglomerate forming systems tend to reach an equilibrium state in solution in which the liquid phase has racemic composition and the solid phase is 1:1 mixture of crystals of both enantiomers. However, before approaching this state, it is possible to preferentially produce just one of the enantiomers after seeding with homochiral crystals. Among all available crystallizer configurations the batch mode is obviously the easiest one. The principle of batch process is quite simple: the vessel is filled with a supersaturated solution of the racemate (enantiomers Ep and Ec). After addition of homochiral seeds e.g., merely Ep is crystallizing within a limited time period. In order to gain the target enantiomer as a product of high purity, the process must be stopped before the nucleation of the undesired counter-enantiomer occurs (Lorenz et al., 2006). During this batch crystallization, the concentration of the desired enantiomer in the solution is decreasing, whereas the concentration of the counter-enantiomer remains constant. Based on analysis of these concentration profiles a more attractive and effective operation mode using two batch crystallizers coupled via liquid phase (see Fig. 1) has been studied (Ziomek et al., 2007). In each vessel one of both enantiomers is seeded and grows subsequently. An exchange of the crystal free liquid phases between the crystallizers leads to an increase of driving forces and consequently process productivity. The influence of important process variables like initial seed size distribution, exchange flow rates between crystallizers, and temperature has been analyzed experimentally using threonine-H2O as a model system. The influence of initial seed size distribution on the productivity and product quality will be shown. By varying size of particles used as a seeds, nucleation as well as growth kinetics are influenced. It will be demonstrated that by appropriate changing of free operating parameters the process performance can be controlled and improved. Parallel to the experimental analysis, a modeling approach will be also presented. References Jacques, J., Collet, A., Wilen, S.H., (1994): Enantiomers, racemates and resolutions, Krieger, Malabar Elsner, M.P., Fernández Menéndez, D., Alonso Muslera, E., Seidel-Morgenstern, A. (2005): 17 (S1), S183-S195 Lorenz, H., Perlberg, A., Sapoundjiev, D., Elsner, M.P., Seidel-Morgenstern, A., (2006) Chem. Eng. and Proc., doi, 10.1016/ j. cep. 2005.11.013 Ziomek, G., Elsner, M.P. Seidel-Morgenstern, A., (2007) Submitted to Chemical Engineering Science

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2007
 出版の状態: 不明
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): eDoc: 320327
 学位: -

関連イベント

表示:
非表示:
イベント名: ECCE-6 : 6th European Congress of Chemical Engineering
開催地: Copenhagen, Denmark
開始日・終了日: 2007-09-16 - 2007-09-21

訴訟

表示:

Project information

表示:

出版物

表示: