Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Using Chemical Reaction Network Theory to discard a Kinetic Mechanism Hypothesis

Conradi, C., Saez-Rodriguez, J., Gilles, E. D., & Raisch, J. (2005). Using Chemical Reaction Network Theory to discard a Kinetic Mechanism Hypothesis. IEE Proceedings Systems Biology, 152(4), 243-248. doi:10.1049/ip-syb:20050045.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Conradi, Carsten1, Autor
Saez-Rodriguez, Julio2, Autor           
Gilles, Ernst Dieter2, Autor           
Raisch, Jörg1, 3, Autor           
Affiliations:
1Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              
2Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738155              
3Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738154              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Chemical Reaction Network Theory; Model discrimination; MAPK-cascade
 Zusammenfassung: Feinberg’s Chemical Reaction Network Theory (CRNT) connects the structure of a biochemical reaction network to qualitative properties of the corresponding system of ordinary differential equations. In particular, no information about parameter values is needed. As such, it seems to be well suited for application in systems biology, where parameter uncertainty is predominant. However, its application in this area is rare, at best. To demonstrate potential benefits from the application, different reaction networks representing a single layer of the well studied Mitogen-activated protein kinase (MAPK) cascade are analyzed. Recent results from Markevich et al. (2004) show that, unexpectedly, multilayered protein kinase cascades can exhibit multistationarity even on a single cascade level. Using CRNT, we show that their assumption of a distributive mechanism for double phosphorylation and dephosphorylation is crucial for multistationarity on the single cascade level. © Copyright 2013 IEEE - All rights reserved [accessed 2013 June 13th]

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2005
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: URI: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1576616
DOI: 10.1049/ip-syb:20050045
eDoc: 239917
Anderer: 56/05
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: IEE Proceedings Systems Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 152 (4) Artikelnummer: - Start- / Endseite: 243 - 248 Identifikator: -