English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The Origin of Bursting pH Oscillations in an Enzyme Model Reaction System

Straube, R., Flockerzi, D., Mueller, S. C., & Hauser, M. J. B. (2005). The Origin of Bursting pH Oscillations in an Enzyme Model Reaction System. Physical Review E, 72, 066205. doi:10.1103/PhysRevE.72.066205.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Straube, R.1, Author              
Flockerzi, D.2, Author              
Mueller, S. C.3, Author
Hauser, M. J. B.3, Author
Affiliations:
1Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738155              
2Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738154              
3Otto-von-Guericke Universität, Institut für Experimentelle Physik, Abteilung Biophysik, Magdeburg, Germany, ou_persistent22              

Content

show
hide
Free keywords: bursting oscillations; mixed-mode oscillations; slow-fast analysis; quasi-integrals; two-paramater continuation
 Abstract: The transition from simple periodic to bursting behavior in a 3-dimensional model system of the hemin -- hydrogen peroxide -- sulfite pH oscillator is investigated. A two-parameter continuation in the flow rate and the hemin decay rate is performed to identify the region of complex dynamics. The bursting oscillations emerge subsequent to a cascade of period doubling bifurcations and the formation of a chaotic attractor in parameter space where they are found to be organized in periodic-chaotic progressions. This suggests that the bursting oscillations are not associated with phase-locked states on a 2-torus. The bursting behavior is classified by a bifurcation analysis using the intrinsic slow-fast structure of the dynamics. In particular, we find a slowly varying quasi-species (i.e. a linear combination of two species) which acts as an `internal' or quasi-static bifurcation parameter for the remaining 2-dimensional subsystem. A systematic two-parameter continuation in the internal and one of the external bifurcation parameters reveals a transition in the bursting mechanism from subHopf/fold-cycle to fold/subHopf type. In addition, the slow-fast analysis provides an explanation for the origin of quasi-periodic behavior in the hemin system, even though the underlying mechanism might be of more general importance. ©2005 The American Physical Society [accessed 2013 June 13th]

Details

show
hide
Language(s): eng - English
 Dates: 2005
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevE.72.066205
eDoc: 238120
Other: 52/05
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review E
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 72 Sequence Number: - Start / End Page: 066205 Identifier: -