English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  High-density electrical mapping during active and passive self-motion

Butler, J., Desanctis, P., Nolan, H., Whelan, R., Bülthoff, H., Reilly, O., et al. (2012). High-density electrical mapping during active and passive self-motion. In 42nd Annual Meeting of the Society for Neuroscience (Neuroscience 2012).

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-B5F0-2 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-9A9E-0
Genre: Meeting Abstract

Files

show Files

Creators

show
hide
 Creators:
Butler, JS, Author              
Desanctis, P, Author
Nolan, H, Author
Whelan, R, Author
Bülthoff, HH1, 2, Author              
Reilly, O, Author
Foxe, J, Author
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: The perception of self-motion is a product of the integration of information from both visual and nonvisual cues, to which the vestibular system is a central contributor. It is well documented that self-motion dysfunction leads to impaired movement and balance, dizziness and falls, and yet our knowledge of the neuronal processing of self-motion signals remains relatively sparse. Here we present two studies extending an emerging line of research trying to obtain electroencephalographic (EEG) recordings while participants engage in real-world tasks. The first study investigated the feasibility of acquiring high-density event-related brain potential (ERP) recordings during treadmill walking. Participants performed a visual response inhibition task - designed to evoke a P3 component for correct response inhibitions and an error-related negativity (ERN) for incorrect commission errors - while speed of walking was experimentally manipulated. Robust P3 and ERN components were obtained under all experimental conditions - while participants were stationary, walking at moderate speed (2.4 km/hour), or walking rapidly (5km/hour). Signal-to-noise ratios were remarkably similar across conditions, pointing to the feasibility of high-fidelity ERP recordings under relatively vigorous activity regimens. In the second study, high-density electroencephalographic recordings were deployed to investigate the neural processes associated with vestibular detection of changes in heading. Participants were translated linearly 7.8 cm on a motion platform using a one second motion profile, at a 45 angle leftward or rightward of straight ahead. These headings were presented with a stimulus probability of 80-20 . Participants responded when they detected the infrequent direction change via button-press. Statistical parametric mapping showed that ERP to standard and target movements differed significantly from 490 to 950 ms post-stimulus. Topographic analysis showed that this difference had a typical P3 topography. These studies provide highly promising methods for gaining insight into the neurophysiological correlates of self-motion in more naturalistic environmental settings.

Details

show
hide
Language(s):
 Dates: 2012-10
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: BibTex Citekey: ButlerDNWBRF2012
 Degree: -

Event

show
hide
Title: 42nd Annual Meeting of the Society for Neuroscience (Neuroscience 2012)
Place of Event: New Orleans, LA, USA
Start-/End Date: -

Legal Case

show

Project information

show

Source 1

show
hide
Title: 42nd Annual Meeting of the Society for Neuroscience (Neuroscience 2012)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 828.06 Start / End Page: - Identifier: -