Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Beyond GLMs: a generative mixture modeling approach to neural system identification

Theis, L., Arnstein, D., Chagas, A., Schwarz, C., & Bethge, M. (2012). Beyond GLMs: a generative mixture modeling approach to neural system identification. Poster presented at Bernstein Conference 2012, München, Germany. doi:10.3389/conf.fncom.2012.55.00080.

Item is

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Theis, LM, Autor           
Arnstein, D, Autor           
Chagas, AM, Autor
Schwarz, C, Autor
Bethge, M1, 2, Autor           
Affiliations:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: One of the principle goals of sensory systems neuroscience is to characterize the relationship between external stimuli and neuronal responses. A popular choice for modeling the responses of neurons is the generalized linear model (GLM). However, due to its inherent linearity, choosing a set of nonlinear features is often crucial but can be difficult in practice if the stimulus dimensionality is high or if the stimulus-response dependencies are complex. Here, we derive a more flexible neuron model which is able to automatically extract highly nonlinear stimulus-response relationships from the data. We start out by representing intuitive and well understood distributions such as the spike-triggered and inter-spike interval distributions using nonparametric models. For instance, we use mixtures of Gaussians to represent spike-triggered distributions which allows for complex stimulus dependencies such as those of cells with multiple preferred stimuli. A simple application of Bayes’ rule allows us to turn these distributions into a model of the neuron’s response, which we dub spike-triggered mixture model (STM). We demonstrate the superior representational power of the STM by fitting it to data generated by a trained GLM and vice versa. While the STM is able to reproduce the behavior of the GLM, the opposite is not the case. We also apply our model to single-cell recordings of primary afferents of the rat’s whisker system and find quantitatively and qualitatively that it is able to better reproduce the cells’ behavior than the GLM. In particular, we obtain much higher estimates of the cells’ mutual information rates.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2012-09
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.3389/conf.fncom.2012.55.00080
BibTex Citekey: TheisACSB2012
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Bernstein Conference 2012
Veranstaltungsort: München, Germany
Start-/Enddatum: -

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Frontiers in Computational Neuroscience
  Kurztitel : Front Comput Neurosci
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lausanne : Frontiers Research Foundation
Seiten: - Band / Heft: 2012 (Conference Abstract: Bernstein Conference 2012) Artikelnummer: - Start- / Endseite: 165 Identifikator: Anderer: 1662-5188
CoNE: https://pure.mpg.de/cone/journals/resource/1662-5188